MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfsucOLD Structured version   Unicode version

Theorem cantnfsucOLD 8009
Description: The value of the recursive function  H at a successor. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnfsuc 7979 as of 28-Jun-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1  |-  S  =  dom  ( A CNF  B
)
cantnfsOLD.2  |-  ( ph  ->  A  e.  On )
cantnfsOLD.3  |-  ( ph  ->  B  e.  On )
cantnfvalOLD.3  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cantnfvalOLD.4  |-  ( ph  ->  F  e.  S )
cantnfvalOLD.5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
Assertion
Ref Expression
cantnfsucOLD  |-  ( (
ph  /\  K  e.  om )  ->  ( H `  suc  K )  =  ( ( ( A  ^o  ( G `  K ) )  .o  ( F `  ( G `  K )
) )  +o  ( H `  K )
) )
Distinct variable groups:    z, k, B    A, k, z    k, F, z    S, k, z   
k, G, z    k, K, z    ph, k, z
Allowed substitution hints:    H( z, k)

Proof of Theorem cantnfsucOLD
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalOLD.5 . . . 4  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
21seqomsuc 7012 . . 3  |-  ( K  e.  om  ->  ( H `  suc  K )  =  ( K ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  K
) ) )
32adantl 466 . 2  |-  ( (
ph  /\  K  e.  om )  ->  ( H `  suc  K )  =  ( K ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  K
) ) )
4 elex 3077 . . . 4  |-  ( K  e.  om  ->  K  e.  _V )
54adantl 466 . . 3  |-  ( (
ph  /\  K  e.  om )  ->  K  e.  _V )
6 fvex 5799 . . 3  |-  ( H `
 K )  e. 
_V
7 simpl 457 . . . . . . . 8  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  ->  u  =  K )
87fveq2d 5793 . . . . . . 7  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( G `  u
)  =  ( G `
 K ) )
98oveq2d 6206 . . . . . 6  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( A  ^o  ( G `  u )
)  =  ( A  ^o  ( G `  K ) ) )
108fveq2d 5793 . . . . . 6  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( F `  ( G `  u )
)  =  ( F `
 ( G `  K ) ) )
119, 10oveq12d 6208 . . . . 5  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( ( A  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) )  =  ( ( A  ^o  ( G `  K ) )  .o  ( F `  ( G `  K )
) ) )
12 simpr 461 . . . . 5  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
v  =  ( H `
 K ) )
1311, 12oveq12d 6208 . . . 4  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  v
)  =  ( ( ( A  ^o  ( G `  K )
)  .o  ( F `
 ( G `  K ) ) )  +o  ( H `  K ) ) )
14 fveq2 5789 . . . . . . . 8  |-  ( k  =  u  ->  ( G `  k )  =  ( G `  u ) )
1514oveq2d 6206 . . . . . . 7  |-  ( k  =  u  ->  ( A  ^o  ( G `  k ) )  =  ( A  ^o  ( G `  u )
) )
1614fveq2d 5793 . . . . . . 7  |-  ( k  =  u  ->  ( F `  ( G `  k ) )  =  ( F `  ( G `  u )
) )
1715, 16oveq12d 6208 . . . . . 6  |-  ( k  =  u  ->  (
( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  =  ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) ) )
1817oveq1d 6205 . . . . 5  |-  ( k  =  u  ->  (
( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z )  =  ( ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  z
) )
19 oveq2 6198 . . . . 5  |-  ( z  =  v  ->  (
( ( A  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) )  +o  z )  =  ( ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  v
) )
2018, 19cbvmpt2v 6265 . . . 4  |-  ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  =  ( u  e. 
_V ,  v  e. 
_V  |->  ( ( ( A  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  +o  v
) )
21 ovex 6215 . . . 4  |-  ( ( ( A  ^o  ( G `  K )
)  .o  ( F `
 ( G `  K ) ) )  +o  ( H `  K ) )  e. 
_V
2213, 20, 21ovmpt2a 6321 . . 3  |-  ( ( K  e.  _V  /\  ( H `  K )  e.  _V )  -> 
( K ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  K
) )  =  ( ( ( A  ^o  ( G `  K ) )  .o  ( F `
 ( G `  K ) ) )  +o  ( H `  K ) ) )
235, 6, 22sylancl 662 . 2  |-  ( (
ph  /\  K  e.  om )  ->  ( K
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ( H `
 K ) )  =  ( ( ( A  ^o  ( G `
 K ) )  .o  ( F `  ( G `  K ) ) )  +o  ( H `  K )
) )
243, 23eqtrd 2492 1  |-  ( (
ph  /\  K  e.  om )  ->  ( H `  suc  K )  =  ( ( ( A  ^o  ( G `  K ) )  .o  ( F `  ( G `  K )
) )  +o  ( H `  K )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3068    \ cdif 3423   (/)c0 3735    _E cep 4728   Oncon0 4817   suc csuc 4819   `'ccnv 4937   dom cdm 4938   "cima 4941   ` cfv 5516  (class class class)co 6190    |-> cmpt2 6192   omcom 6576  seq𝜔cseqom 7002   1oc1o 7013    +o coa 7017    .o comu 7018    ^o coe 7019  OrdIsocoi 7824   CNF ccnf 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-2nd 6678  df-recs 6932  df-rdg 6966  df-seqom 7003
This theorem is referenced by:  cantnfleOLD  8010  cantnfltOLD  8011  cantnfp1lem3OLD  8015  cantnflem1dOLD  8020  cantnflem1OLD  8021  cnfcomlemOLD  8041
  Copyright terms: Public domain W3C validator