MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1OLD Structured version   Unicode version

Theorem cantnfp1OLD 8160
Description: If  F is created by adding a single term  ( F `
 X )  =  Y to  G, where  X is larger than any element of the support of  G, then  F is also a finitely supported function and it is assigned the value  ( ( A  ^o  X )  .o  Y
)  +o  z where  z is the value of  G. (Contributed by Mario Carneiro, 28-May-2015.) Obsolete version of cantnfp1 8134 as of 1-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1  |-  S  =  dom  ( A CNF  B
)
cantnfsOLD.2  |-  ( ph  ->  A  e.  On )
cantnfsOLD.3  |-  ( ph  ->  B  e.  On )
cantnfp1OLD.4  |-  ( ph  ->  G  e.  S )
cantnfp1OLD.5  |-  ( ph  ->  X  e.  B )
cantnfp1OLD.6  |-  ( ph  ->  Y  e.  A )
cantnfp1OLD.7  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  X
)
cantnfp1OLD.f  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
Assertion
Ref Expression
cantnfp1OLD  |-  ( ph  ->  ( F  e.  S  /\  ( ( A CNF  B
) `  F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  ( ( A CNF  B
) `  G )
) ) )
Distinct variable groups:    t, B    t, A    t, S    t, G    ph, t    t, Y   
t, X
Allowed substitution hint:    F( t)

Proof of Theorem cantnfp1OLD
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfp1OLD.f . . . . . 6  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
2 eqeq1 2408 . . . . . . . 8  |-  ( Y  =  if ( t  =  X ,  Y ,  ( G `  t ) )  -> 
( Y  =  ( G `  t )  <-> 
if ( t  =  X ,  Y , 
( G `  t
) )  =  ( G `  t ) ) )
3 eqeq1 2408 . . . . . . . 8  |-  ( ( G `  t )  =  if ( t  =  X ,  Y ,  ( G `  t ) )  -> 
( ( G `  t )  =  ( G `  t )  <-> 
if ( t  =  X ,  Y , 
( G `  t
) )  =  ( G `  t ) ) )
4 cantnfsOLD.3 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  On )
5 cantnfp1OLD.5 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  B )
6 onelon 5437 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  X  e.  B )  ->  X  e.  On )
74, 5, 6syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  On )
8 eloni 5422 . . . . . . . . . . . 12  |-  ( X  e.  On  ->  Ord  X )
9 ordirr 5430 . . . . . . . . . . . 12  |-  ( Ord 
X  ->  -.  X  e.  X )
107, 8, 93syl 18 . . . . . . . . . . 11  |-  ( ph  ->  -.  X  e.  X
)
11 fvex 5861 . . . . . . . . . . . . . 14  |-  ( G `
 X )  e. 
_V
12 dif1o 7189 . . . . . . . . . . . . . 14  |-  ( ( G `  X )  e.  ( _V  \  1o )  <->  ( ( G `
 X )  e. 
_V  /\  ( G `  X )  =/=  (/) ) )
1311, 12mpbiran 921 . . . . . . . . . . . . 13  |-  ( ( G `  X )  e.  ( _V  \  1o )  <->  ( G `  X )  =/=  (/) )
14 cantnfp1OLD.4 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  e.  S )
15 cantnfsOLD.1 . . . . . . . . . . . . . . . . . . 19  |-  S  =  dom  ( A CNF  B
)
16 cantnfsOLD.2 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  On )
1715, 16, 4cantnfsOLD 8149 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  ( `' G " ( _V 
\  1o ) )  e.  Fin ) ) )
1814, 17mpbid 212 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G : B --> A  /\  ( `' G " ( _V  \  1o ) )  e.  Fin ) )
1918simpld 459 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : B --> A )
20 ffn 5716 . . . . . . . . . . . . . . . 16  |-  ( G : B --> A  ->  G  Fn  B )
21 elpreima 5987 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  B  ->  ( X  e.  ( `' G " ( _V  \  1o ) )  <->  ( X  e.  B  /\  ( G `  X )  e.  ( _V  \  1o ) ) ) )
2219, 20, 213syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  e.  ( `' G " ( _V 
\  1o ) )  <-> 
( X  e.  B  /\  ( G `  X
)  e.  ( _V 
\  1o ) ) ) )
23 cantnfp1OLD.7 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  X
)
2423sseld 3443 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  e.  ( `' G " ( _V 
\  1o ) )  ->  X  e.  X
) )
2522, 24sylbird 237 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X  e.  B  /\  ( G `
 X )  e.  ( _V  \  1o ) )  ->  X  e.  X ) )
265, 25mpand 675 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G `  X )  e.  ( _V  \  1o )  ->  X  e.  X
) )
2713, 26syl5bir 220 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G `  X )  =/=  (/)  ->  X  e.  X ) )
2827necon1bd 2623 . . . . . . . . . . 11  |-  ( ph  ->  ( -.  X  e.  X  ->  ( G `  X )  =  (/) ) )
2910, 28mpd 15 . . . . . . . . . 10  |-  ( ph  ->  ( G `  X
)  =  (/) )
3029ad3antrrr 730 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  ( G `  X )  =  (/) )
31 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  t  =  X )
3231fveq2d 5855 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  ( G `  t )  =  ( G `  X ) )
33 simpllr 763 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  Y  =  (/) )
3430, 32, 333eqtr4rd 2456 . . . . . . . 8  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  Y  =  ( G `  t ) )
35 eqidd 2405 . . . . . . . 8  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  -.  t  =  X )  ->  ( G `  t )  =  ( G `  t ) )
362, 3, 34, 35ifbothda 3922 . . . . . . 7  |-  ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  =  ( G `
 t ) )
3736mpteq2dva 4483 . . . . . 6  |-  ( (
ph  /\  Y  =  (/) )  ->  ( t  e.  B  |->  if ( t  =  X ,  Y ,  ( G `  t ) ) )  =  ( t  e.  B  |->  ( G `  t ) ) )
381, 37syl5eq 2457 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  F  =  ( t  e.  B  |->  ( G `  t
) ) )
3919feqmptd 5904 . . . . . 6  |-  ( ph  ->  G  =  ( t  e.  B  |->  ( G `
 t ) ) )
4039adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  G  =  ( t  e.  B  |->  ( G `  t
) ) )
4138, 40eqtr4d 2448 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  F  =  G )
4214adantr 465 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  G  e.  S )
4341, 42eqeltrd 2492 . . 3  |-  ( (
ph  /\  Y  =  (/) )  ->  F  e.  S )
44 oecl 7226 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
4516, 4, 44syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  ^o  B
)  e.  On )
4615, 16, 4cantnff 8127 . . . . . . . 8  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
4746, 14ffvelrnd 6012 . . . . . . 7  |-  ( ph  ->  ( ( A CNF  B
) `  G )  e.  ( A  ^o  B
) )
48 onelon 5437 . . . . . . 7  |-  ( ( ( A  ^o  B
)  e.  On  /\  ( ( A CNF  B
) `  G )  e.  ( A  ^o  B
) )  ->  (
( A CNF  B ) `
 G )  e.  On )
4945, 47, 48syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( A CNF  B
) `  G )  e.  On )
5049adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A CNF  B ) `  G
)  e.  On )
51 oa0r 7227 . . . . 5  |-  ( ( ( A CNF  B ) `
 G )  e.  On  ->  ( (/)  +o  (
( A CNF  B ) `
 G ) )  =  ( ( A CNF 
B ) `  G
) )
5250, 51syl 17 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  ( (/)  +o  (
( A CNF  B ) `
 G ) )  =  ( ( A CNF 
B ) `  G
) )
53 oveq2 6288 . . . . . 6  |-  ( Y  =  (/)  ->  ( ( A  ^o  X )  .o  Y )  =  ( ( A  ^o  X )  .o  (/) ) )
54 oecl 7226 . . . . . . . 8  |-  ( ( A  e.  On  /\  X  e.  On )  ->  ( A  ^o  X
)  e.  On )
5516, 7, 54syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  ^o  X
)  e.  On )
56 om0 7206 . . . . . . 7  |-  ( ( A  ^o  X )  e.  On  ->  (
( A  ^o  X
)  .o  (/) )  =  (/) )
5755, 56syl 17 . . . . . 6  |-  ( ph  ->  ( ( A  ^o  X )  .o  (/) )  =  (/) )
5853, 57sylan9eqr 2467 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A  ^o  X )  .o  Y )  =  (/) )
5958oveq1d 6295 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  ( (
( A  ^o  X
)  .o  Y )  +o  ( ( A CNF 
B ) `  G
) )  =  (
(/)  +o  ( ( A CNF  B ) `  G
) ) )
6041fveq2d 5855 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A CNF  B ) `  F
)  =  ( ( A CNF  B ) `  G ) )
6152, 59, 603eqtr4rd 2456 . . 3  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A CNF  B ) `  F
)  =  ( ( ( A  ^o  X
)  .o  Y )  +o  ( ( A CNF 
B ) `  G
) ) )
6243, 61jca 532 . 2  |-  ( (
ph  /\  Y  =  (/) )  ->  ( F  e.  S  /\  (
( A CNF  B ) `
 F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  (
( A CNF  B ) `
 G ) ) ) )
6316adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  A  e.  On )
644adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  B  e.  On )
6514adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  G  e.  S )
665adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  X  e.  B )
67 cantnfp1OLD.6 . . . . 5  |-  ( ph  ->  Y  e.  A )
6867adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  Y  e.  A )
6923adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  ( `' G " ( _V  \  1o ) )  C_  X
)
7015, 63, 64, 65, 66, 68, 69, 1cantnfp1lem1OLD 8157 . . 3  |-  ( (
ph  /\  Y  =/=  (/) )  ->  F  e.  S )
71 onelon 5437 . . . . . . 7  |-  ( ( A  e.  On  /\  Y  e.  A )  ->  Y  e.  On )
7216, 67, 71syl2anc 661 . . . . . 6  |-  ( ph  ->  Y  e.  On )
73 on0eln0 5467 . . . . . 6  |-  ( Y  e.  On  ->  ( (/) 
e.  Y  <->  Y  =/=  (/) ) )
7472, 73syl 17 . . . . 5  |-  ( ph  ->  ( (/)  e.  Y  <->  Y  =/=  (/) ) )
7574biimpar 485 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  (/)  e.  Y
)
76 eqid 2404 . . . 4  |- OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
77 eqid 2404 . . . 4  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) ) `  k ) )  .o  ( F `  (OrdIso (  _E  ,  ( `' F " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) ) `  k ) )  .o  ( F `  (OrdIso (  _E  ,  ( `' F " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )
78 eqid 2404 . . . 4  |- OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
79 eqid 2404 . . . 4  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) ) `  k ) )  .o  ( G `  (OrdIso (  _E  ,  ( `' G " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) ) `  k ) )  .o  ( G `  (OrdIso (  _E  ,  ( `' G " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )
8015, 63, 64, 65, 66, 68, 69, 1, 75, 76, 77, 78, 79cantnfp1lem3OLD 8159 . . 3  |-  ( (
ph  /\  Y  =/=  (/) )  ->  ( ( A CNF  B ) `  F
)  =  ( ( ( A  ^o  X
)  .o  Y )  +o  ( ( A CNF 
B ) `  G
) ) )
8170, 80jca 532 . 2  |-  ( (
ph  /\  Y  =/=  (/) )  ->  ( F  e.  S  /\  (
( A CNF  B ) `
 F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  (
( A CNF  B ) `
 G ) ) ) )
8262, 81pm2.61dane 2723 1  |-  ( ph  ->  ( F  e.  S  /\  ( ( A CNF  B
) `  F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  ( ( A CNF  B
) `  G )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   _Vcvv 3061    \ cdif 3413    C_ wss 3416   (/)c0 3740   ifcif 3887    |-> cmpt 4455    _E cep 4734   `'ccnv 4824   dom cdm 4825   "cima 4828   Ord word 5411   Oncon0 5412    Fn wfn 5566   -->wf 5567   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282  seq𝜔cseqom 7151   1oc1o 7162    +o coa 7166    .o comu 7167    ^o coe 7168   Fincfn 7556  OrdIsocoi 7970   CNF ccnf 8112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-supp 6905  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-seqom 7152  df-1o 7169  df-2o 7170  df-oadd 7173  df-omul 7174  df-oexp 7175  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fsupp 7866  df-oi 7971  df-cnf 8113
This theorem is referenced by:  cantnflem1dOLD  8164  cantnflem1OLD  8165  cantnflem3OLD  8166
  Copyright terms: Public domain W3C validator