MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1OLD Structured version   Unicode version

Theorem cantnfp1OLD 8016
Description: If  F is created by adding a single term  ( F `
 X )  =  Y to  G, where  X is larger than any element of the support of  G, then  F is also a finitely supported function and it is assigned the value  ( ( A  ^o  X )  .o  Y
)  +o  z where  z is the value of  G. (Contributed by Mario Carneiro, 28-May-2015.) Obsolete version of cantnfp1 7990 as of 1-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1  |-  S  =  dom  ( A CNF  B
)
cantnfsOLD.2  |-  ( ph  ->  A  e.  On )
cantnfsOLD.3  |-  ( ph  ->  B  e.  On )
cantnfp1OLD.4  |-  ( ph  ->  G  e.  S )
cantnfp1OLD.5  |-  ( ph  ->  X  e.  B )
cantnfp1OLD.6  |-  ( ph  ->  Y  e.  A )
cantnfp1OLD.7  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  X
)
cantnfp1OLD.f  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
Assertion
Ref Expression
cantnfp1OLD  |-  ( ph  ->  ( F  e.  S  /\  ( ( A CNF  B
) `  F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  ( ( A CNF  B
) `  G )
) ) )
Distinct variable groups:    t, B    t, A    t, S    t, G    ph, t    t, Y   
t, X
Allowed substitution hint:    F( t)

Proof of Theorem cantnfp1OLD
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfp1OLD.f . . . . . 6  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
2 eqeq1 2455 . . . . . . . 8  |-  ( Y  =  if ( t  =  X ,  Y ,  ( G `  t ) )  -> 
( Y  =  ( G `  t )  <-> 
if ( t  =  X ,  Y , 
( G `  t
) )  =  ( G `  t ) ) )
3 eqeq1 2455 . . . . . . . 8  |-  ( ( G `  t )  =  if ( t  =  X ,  Y ,  ( G `  t ) )  -> 
( ( G `  t )  =  ( G `  t )  <-> 
if ( t  =  X ,  Y , 
( G `  t
) )  =  ( G `  t ) ) )
4 cantnfsOLD.3 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  On )
5 cantnfp1OLD.5 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  B )
6 onelon 4842 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  X  e.  B )  ->  X  e.  On )
74, 5, 6syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  On )
8 eloni 4827 . . . . . . . . . . . 12  |-  ( X  e.  On  ->  Ord  X )
9 ordirr 4835 . . . . . . . . . . . 12  |-  ( Ord 
X  ->  -.  X  e.  X )
107, 8, 93syl 20 . . . . . . . . . . 11  |-  ( ph  ->  -.  X  e.  X
)
11 fvex 5799 . . . . . . . . . . . . . 14  |-  ( G `
 X )  e. 
_V
12 dif1o 7040 . . . . . . . . . . . . . 14  |-  ( ( G `  X )  e.  ( _V  \  1o )  <->  ( ( G `
 X )  e. 
_V  /\  ( G `  X )  =/=  (/) ) )
1311, 12mpbiran 909 . . . . . . . . . . . . 13  |-  ( ( G `  X )  e.  ( _V  \  1o )  <->  ( G `  X )  =/=  (/) )
14 cantnfp1OLD.4 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  e.  S )
15 cantnfsOLD.1 . . . . . . . . . . . . . . . . . . 19  |-  S  =  dom  ( A CNF  B
)
16 cantnfsOLD.2 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  On )
1715, 16, 4cantnfsOLD 8005 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  ( `' G " ( _V 
\  1o ) )  e.  Fin ) ) )
1814, 17mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G : B --> A  /\  ( `' G " ( _V  \  1o ) )  e.  Fin ) )
1918simpld 459 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : B --> A )
20 ffn 5657 . . . . . . . . . . . . . . . 16  |-  ( G : B --> A  ->  G  Fn  B )
21 elpreima 5922 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  B  ->  ( X  e.  ( `' G " ( _V  \  1o ) )  <->  ( X  e.  B  /\  ( G `  X )  e.  ( _V  \  1o ) ) ) )
2219, 20, 213syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  e.  ( `' G " ( _V 
\  1o ) )  <-> 
( X  e.  B  /\  ( G `  X
)  e.  ( _V 
\  1o ) ) ) )
23 cantnfp1OLD.7 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  X
)
2423sseld 3453 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  e.  ( `' G " ( _V 
\  1o ) )  ->  X  e.  X
) )
2522, 24sylbird 235 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X  e.  B  /\  ( G `
 X )  e.  ( _V  \  1o ) )  ->  X  e.  X ) )
265, 25mpand 675 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G `  X )  e.  ( _V  \  1o )  ->  X  e.  X
) )
2713, 26syl5bir 218 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G `  X )  =/=  (/)  ->  X  e.  X ) )
2827necon1bd 2666 . . . . . . . . . . 11  |-  ( ph  ->  ( -.  X  e.  X  ->  ( G `  X )  =  (/) ) )
2910, 28mpd 15 . . . . . . . . . 10  |-  ( ph  ->  ( G `  X
)  =  (/) )
3029ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  ( G `  X )  =  (/) )
31 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  t  =  X )
3231fveq2d 5793 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  ( G `  t )  =  ( G `  X ) )
33 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  Y  =  (/) )
3430, 32, 333eqtr4rd 2503 . . . . . . . 8  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  t  =  X
)  ->  Y  =  ( G `  t ) )
35 eqidd 2452 . . . . . . . 8  |-  ( ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  /\  -.  t  =  X )  ->  ( G `  t )  =  ( G `  t ) )
362, 3, 34, 35ifbothda 3922 . . . . . . 7  |-  ( ( ( ph  /\  Y  =  (/) )  /\  t  e.  B )  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  =  ( G `
 t ) )
3736mpteq2dva 4476 . . . . . 6  |-  ( (
ph  /\  Y  =  (/) )  ->  ( t  e.  B  |->  if ( t  =  X ,  Y ,  ( G `  t ) ) )  =  ( t  e.  B  |->  ( G `  t ) ) )
381, 37syl5eq 2504 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  F  =  ( t  e.  B  |->  ( G `  t
) ) )
3919feqmptd 5843 . . . . . 6  |-  ( ph  ->  G  =  ( t  e.  B  |->  ( G `
 t ) ) )
4039adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  G  =  ( t  e.  B  |->  ( G `  t
) ) )
4138, 40eqtr4d 2495 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  F  =  G )
4214adantr 465 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  G  e.  S )
4341, 42eqeltrd 2539 . . 3  |-  ( (
ph  /\  Y  =  (/) )  ->  F  e.  S )
44 oecl 7077 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
4516, 4, 44syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  ^o  B
)  e.  On )
4615, 16, 4cantnff 7983 . . . . . . . 8  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
4746, 14ffvelrnd 5943 . . . . . . 7  |-  ( ph  ->  ( ( A CNF  B
) `  G )  e.  ( A  ^o  B
) )
48 onelon 4842 . . . . . . 7  |-  ( ( ( A  ^o  B
)  e.  On  /\  ( ( A CNF  B
) `  G )  e.  ( A  ^o  B
) )  ->  (
( A CNF  B ) `
 G )  e.  On )
4945, 47, 48syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( A CNF  B
) `  G )  e.  On )
5049adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A CNF  B ) `  G
)  e.  On )
51 oa0r 7078 . . . . 5  |-  ( ( ( A CNF  B ) `
 G )  e.  On  ->  ( (/)  +o  (
( A CNF  B ) `
 G ) )  =  ( ( A CNF 
B ) `  G
) )
5250, 51syl 16 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  ( (/)  +o  (
( A CNF  B ) `
 G ) )  =  ( ( A CNF 
B ) `  G
) )
53 oveq2 6198 . . . . . 6  |-  ( Y  =  (/)  ->  ( ( A  ^o  X )  .o  Y )  =  ( ( A  ^o  X )  .o  (/) ) )
54 oecl 7077 . . . . . . . 8  |-  ( ( A  e.  On  /\  X  e.  On )  ->  ( A  ^o  X
)  e.  On )
5516, 7, 54syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  ^o  X
)  e.  On )
56 om0 7057 . . . . . . 7  |-  ( ( A  ^o  X )  e.  On  ->  (
( A  ^o  X
)  .o  (/) )  =  (/) )
5755, 56syl 16 . . . . . 6  |-  ( ph  ->  ( ( A  ^o  X )  .o  (/) )  =  (/) )
5853, 57sylan9eqr 2514 . . . . 5  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A  ^o  X )  .o  Y )  =  (/) )
5958oveq1d 6205 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  ( (
( A  ^o  X
)  .o  Y )  +o  ( ( A CNF 
B ) `  G
) )  =  (
(/)  +o  ( ( A CNF  B ) `  G
) ) )
6041fveq2d 5793 . . . 4  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A CNF  B ) `  F
)  =  ( ( A CNF  B ) `  G ) )
6152, 59, 603eqtr4rd 2503 . . 3  |-  ( (
ph  /\  Y  =  (/) )  ->  ( ( A CNF  B ) `  F
)  =  ( ( ( A  ^o  X
)  .o  Y )  +o  ( ( A CNF 
B ) `  G
) ) )
6243, 61jca 532 . 2  |-  ( (
ph  /\  Y  =  (/) )  ->  ( F  e.  S  /\  (
( A CNF  B ) `
 F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  (
( A CNF  B ) `
 G ) ) ) )
6316adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  A  e.  On )
644adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  B  e.  On )
6514adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  G  e.  S )
665adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  X  e.  B )
67 cantnfp1OLD.6 . . . . 5  |-  ( ph  ->  Y  e.  A )
6867adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  Y  e.  A )
6923adantr 465 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  ( `' G " ( _V  \  1o ) )  C_  X
)
7015, 63, 64, 65, 66, 68, 69, 1cantnfp1lem1OLD 8013 . . 3  |-  ( (
ph  /\  Y  =/=  (/) )  ->  F  e.  S )
71 onelon 4842 . . . . . . 7  |-  ( ( A  e.  On  /\  Y  e.  A )  ->  Y  e.  On )
7216, 67, 71syl2anc 661 . . . . . 6  |-  ( ph  ->  Y  e.  On )
73 on0eln0 4872 . . . . . 6  |-  ( Y  e.  On  ->  ( (/) 
e.  Y  <->  Y  =/=  (/) ) )
7472, 73syl 16 . . . . 5  |-  ( ph  ->  ( (/)  e.  Y  <->  Y  =/=  (/) ) )
7574biimpar 485 . . . 4  |-  ( (
ph  /\  Y  =/=  (/) )  ->  (/)  e.  Y
)
76 eqid 2451 . . . 4  |- OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
77 eqid 2451 . . . 4  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) ) `  k ) )  .o  ( F `  (OrdIso (  _E  ,  ( `' F " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) ) `  k ) )  .o  ( F `  (OrdIso (  _E  ,  ( `' F " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )
78 eqid 2451 . . . 4  |- OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
79 eqid 2451 . . . 4  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) ) `  k ) )  .o  ( G `  (OrdIso (  _E  ,  ( `' G " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) ) `  k ) )  .o  ( G `  (OrdIso (  _E  ,  ( `' G " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )
8015, 63, 64, 65, 66, 68, 69, 1, 75, 76, 77, 78, 79cantnfp1lem3OLD 8015 . . 3  |-  ( (
ph  /\  Y  =/=  (/) )  ->  ( ( A CNF  B ) `  F
)  =  ( ( ( A  ^o  X
)  .o  Y )  +o  ( ( A CNF 
B ) `  G
) ) )
8170, 80jca 532 . 2  |-  ( (
ph  /\  Y  =/=  (/) )  ->  ( F  e.  S  /\  (
( A CNF  B ) `
 F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  (
( A CNF  B ) `
 G ) ) ) )
8262, 81pm2.61dane 2766 1  |-  ( ph  ->  ( F  e.  S  /\  ( ( A CNF  B
) `  F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  ( ( A CNF  B
) `  G )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   _Vcvv 3068    \ cdif 3423    C_ wss 3426   (/)c0 3735   ifcif 3889    |-> cmpt 4448    _E cep 4728   Ord word 4816   Oncon0 4817   `'ccnv 4937   dom cdm 4938   "cima 4941    Fn wfn 5511   -->wf 5512   ` cfv 5516  (class class class)co 6190    |-> cmpt2 6192  seq𝜔cseqom 7002   1oc1o 7013    +o coa 7017    .o comu 7018    ^o coe 7019   Fincfn 7410  OrdIsocoi 7824   CNF ccnf 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-supp 6791  df-recs 6932  df-rdg 6966  df-seqom 7003  df-1o 7020  df-2o 7021  df-oadd 7024  df-omul 7025  df-oexp 7026  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-fsupp 7722  df-oi 7825  df-cnf 7969
This theorem is referenced by:  cantnflem1dOLD  8020  cantnflem1OLD  8021  cantnflem3OLD  8022
  Copyright terms: Public domain W3C validator