MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem4OLD Structured version   Unicode version

Theorem cantnflem4OLD 8145
Description: Lemma for cantnfOLD 8146. Complete the induction step of cantnflem3OLD 8144. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnflem4 8123 as of 2-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1  |-  S  =  dom  ( A CNF  B
)
cantnfsOLD.2  |-  ( ph  ->  A  e.  On )
cantnfsOLD.3  |-  ( ph  ->  B  e.  On )
oemapvalOLD.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
cantnfOLD.1  |-  ( ph  ->  C  e.  ( A  ^o  B ) )
cantnfOLD.2  |-  ( ph  ->  C  C_  ran  ( A CNF 
B ) )
cantnfOLD.3  |-  ( ph  -> 
(/)  e.  C )
cantnfOLD.4  |-  X  = 
U. |^| { c  e.  On  |  C  e.  ( A  ^o  c
) }
cantnfOLD.5  |-  P  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  X ) ( d  =  <. a ,  b
>.  /\  ( ( ( A  ^o  X )  .o  a )  +o  b )  =  C ) )
cantnfOLD.6  |-  Y  =  ( 1st `  P
)
cantnfOLD.7  |-  Z  =  ( 2nd `  P
)
Assertion
Ref Expression
cantnflem4OLD  |-  ( ph  ->  C  e.  ran  ( A CNF  B ) )
Distinct variable groups:    w, c, x, y, z, B    a,
b, c, d, w, x, y, z, C    A, a, b, c, d, w, x, y, z    T, c    S, c, x, y, z    x, Z, y, z    ph, x, y, z    w, Y, x, y, z    X, a, b, d, w, x, y, z
Allowed substitution hints:    ph( w, a, b, c, d)    B( a, b, d)    P( x, y, z, w, a, b, c, d)    S( w, a, b, d)    T( x, y, z, w, a, b, d)    X( c)    Y( a, b, c, d)    Z( w, a, b, c, d)

Proof of Theorem cantnflem4OLD
Dummy variables  g 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfOLD.2 . . . 4  |-  ( ph  ->  C  C_  ran  ( A CNF 
B ) )
2 cantnfsOLD.2 . . . . . . . . 9  |-  ( ph  ->  A  e.  On )
3 cantnfsOLD.1 . . . . . . . . . . . . 13  |-  S  =  dom  ( A CNF  B
)
4 cantnfsOLD.3 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  On )
5 oemapvalOLD.t . . . . . . . . . . . . 13  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
6 cantnfOLD.1 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( A  ^o  B ) )
7 cantnfOLD.3 . . . . . . . . . . . . 13  |-  ( ph  -> 
(/)  e.  C )
83, 2, 4, 5, 6, 1, 7cantnflem2 8121 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  ( On  \  2o )  /\  C  e.  ( On  \  1o ) ) )
9 eqid 2467 . . . . . . . . . . . . . 14  |-  X  =  X
10 eqid 2467 . . . . . . . . . . . . . 14  |-  Y  =  Y
11 eqid 2467 . . . . . . . . . . . . . 14  |-  Z  =  Z
129, 10, 113pm3.2i 1174 . . . . . . . . . . . . 13  |-  ( X  =  X  /\  Y  =  Y  /\  Z  =  Z )
13 cantnfOLD.4 . . . . . . . . . . . . . 14  |-  X  = 
U. |^| { c  e.  On  |  C  e.  ( A  ^o  c
) }
14 cantnfOLD.5 . . . . . . . . . . . . . 14  |-  P  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  X ) ( d  =  <. a ,  b
>.  /\  ( ( ( A  ^o  X )  .o  a )  +o  b )  =  C ) )
15 cantnfOLD.6 . . . . . . . . . . . . . 14  |-  Y  =  ( 1st `  P
)
16 cantnfOLD.7 . . . . . . . . . . . . . 14  |-  Z  =  ( 2nd `  P
)
1713, 14, 15, 16oeeui 7263 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( On 
\  2o )  /\  C  e.  ( On  \  1o ) )  -> 
( ( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C )  <->  ( X  =  X  /\  Y  =  Y  /\  Z  =  Z ) ) )
1812, 17mpbiri 233 . . . . . . . . . . . 12  |-  ( ( A  e.  ( On 
\  2o )  /\  C  e.  ( On  \  1o ) )  -> 
( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C ) )
198, 18syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C ) )
2019simpld 459 . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  On  /\  Y  e.  ( A 
\  1o )  /\  Z  e.  ( A  ^o  X ) ) )
2120simp1d 1008 . . . . . . . . 9  |-  ( ph  ->  X  e.  On )
22 oecl 7199 . . . . . . . . 9  |-  ( ( A  e.  On  /\  X  e.  On )  ->  ( A  ^o  X
)  e.  On )
232, 21, 22syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( A  ^o  X
)  e.  On )
2420simp2d 1009 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( A 
\  1o ) )
2524eldifad 3493 . . . . . . . . 9  |-  ( ph  ->  Y  e.  A )
26 onelon 4909 . . . . . . . . 9  |-  ( ( A  e.  On  /\  Y  e.  A )  ->  Y  e.  On )
272, 25, 26syl2anc 661 . . . . . . . 8  |-  ( ph  ->  Y  e.  On )
28 omcl 7198 . . . . . . . 8  |-  ( ( ( A  ^o  X
)  e.  On  /\  Y  e.  On )  ->  ( ( A  ^o  X )  .o  Y
)  e.  On )
2923, 27, 28syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  e.  On )
3020simp3d 1010 . . . . . . . 8  |-  ( ph  ->  Z  e.  ( A  ^o  X ) )
31 onelon 4909 . . . . . . . 8  |-  ( ( ( A  ^o  X
)  e.  On  /\  Z  e.  ( A  ^o  X ) )  ->  Z  e.  On )
3223, 30, 31syl2anc 661 . . . . . . 7  |-  ( ph  ->  Z  e.  On )
33 oaword1 7213 . . . . . . 7  |-  ( ( ( ( A  ^o  X )  .o  Y
)  e.  On  /\  Z  e.  On )  ->  ( ( A  ^o  X )  .o  Y
)  C_  ( (
( A  ^o  X
)  .o  Y )  +o  Z ) )
3429, 32, 33syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  C_  ( (
( A  ^o  X
)  .o  Y )  +o  Z ) )
35 dif1o 7162 . . . . . . . . . . 11  |-  ( Y  e.  ( A  \  1o )  <->  ( Y  e.  A  /\  Y  =/=  (/) ) )
3635simprbi 464 . . . . . . . . . 10  |-  ( Y  e.  ( A  \  1o )  ->  Y  =/=  (/) )
3724, 36syl 16 . . . . . . . . 9  |-  ( ph  ->  Y  =/=  (/) )
38 on0eln0 4939 . . . . . . . . . 10  |-  ( Y  e.  On  ->  ( (/) 
e.  Y  <->  Y  =/=  (/) ) )
3927, 38syl 16 . . . . . . . . 9  |-  ( ph  ->  ( (/)  e.  Y  <->  Y  =/=  (/) ) )
4037, 39mpbird 232 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  Y )
41 omword1 7234 . . . . . . . 8  |-  ( ( ( ( A  ^o  X )  e.  On  /\  Y  e.  On )  /\  (/)  e.  Y )  ->  ( A  ^o  X )  C_  (
( A  ^o  X
)  .o  Y ) )
4223, 27, 40, 41syl21anc 1227 . . . . . . 7  |-  ( ph  ->  ( A  ^o  X
)  C_  ( ( A  ^o  X )  .o  Y ) )
4342, 30sseldd 3510 . . . . . 6  |-  ( ph  ->  Z  e.  ( ( A  ^o  X )  .o  Y ) )
4434, 43sseldd 3510 . . . . 5  |-  ( ph  ->  Z  e.  ( ( ( A  ^o  X
)  .o  Y )  +o  Z ) )
4519simprd 463 . . . . 5  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  Y )  +o  Z
)  =  C )
4644, 45eleqtrd 2557 . . . 4  |-  ( ph  ->  Z  e.  C )
471, 46sseldd 3510 . . 3  |-  ( ph  ->  Z  e.  ran  ( A CNF  B ) )
483, 2, 4cantnff 8105 . . . 4  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
49 ffn 5737 . . . 4  |-  ( ( A CNF  B ) : S --> ( A  ^o  B )  ->  ( A CNF  B )  Fn  S
)
50 fvelrnb 5921 . . . 4  |-  ( ( A CNF  B )  Fn  S  ->  ( Z  e.  ran  ( A CNF  B
)  <->  E. g  e.  S  ( ( A CNF  B
) `  g )  =  Z ) )
5148, 49, 503syl 20 . . 3  |-  ( ph  ->  ( Z  e.  ran  ( A CNF  B )  <->  E. g  e.  S  ( ( A CNF  B ) `
 g )  =  Z ) )
5247, 51mpbid 210 . 2  |-  ( ph  ->  E. g  e.  S  ( ( A CNF  B
) `  g )  =  Z )
532adantr 465 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  A  e.  On )
544adantr 465 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  B  e.  On )
556adantr 465 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  C  e.  ( A  ^o  B ) )
561adantr 465 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  C  C_  ran  ( A CNF 
B ) )
577adantr 465 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  (/) 
e.  C )
58 simprl 755 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  -> 
g  e.  S )
59 simprr 756 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  -> 
( ( A CNF  B
) `  g )  =  Z )
60 eqid 2467 . . 3  |-  ( t  e.  B  |->  if ( t  =  X ,  Y ,  ( g `  t ) ) )  =  ( t  e.  B  |->  if ( t  =  X ,  Y ,  ( g `  t ) ) )
613, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60cantnflem3OLD 8144 . 2  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  C  e.  ran  ( A CNF 
B ) )
6252, 61rexlimddv 2963 1  |-  ( ph  ->  C  e.  ran  ( A CNF  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821    \ cdif 3478    C_ wss 3481   (/)c0 3790   ifcif 3945   <.cop 4039   U.cuni 4251   |^|cint 4288   {copab 4510    |-> cmpt 4511   Oncon0 4884   dom cdm 5005   ran crn 5006   iotacio 5555    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   1stc1st 6793   2ndc2nd 6794   1oc1o 7135   2oc2o 7136    +o coa 7139    .o comu 7140    ^o coe 7141   CNF ccnf 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-seqom 7125  df-1o 7142  df-2o 7143  df-oadd 7146  df-omul 7147  df-oexp 7148  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-oi 7947  df-cnf 8091
This theorem is referenced by:  cantnfOLD  8146
  Copyright terms: Public domain W3C validator