MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1c Structured version   Unicode version

Theorem cantnflem1c 8106
Description: Lemma for cantnf 8112. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.f  |-  ( ph  ->  F  e.  S )
oemapval.g  |-  ( ph  ->  G  e.  S )
oemapvali.r  |-  ( ph  ->  F T G )
oemapvali.x  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
cantnflem1.o  |-  O  = OrdIso
(  _E  ,  ( G supp  (/) ) )
Assertion
Ref Expression
cantnflem1c  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  ( G supp  (/) ) )
Distinct variable groups:    u, c, w, x, y, z, B    A, c, u, w, x, y, z    T, c, u    u, F, w, x, y, z    S, c, u, x, y, z    G, c, u, w, x, y, z    u, O, w, x, y, z    ph, u, x, y, z   
u, X, w, x, y, z    F, c    ph, c
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)    O( c)    X( c)

Proof of Theorem cantnflem1c
StepHypRef Expression
1 cantnfs.b . . 3  |-  ( ph  ->  B  e.  On )
21ad3antrrr 729 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  B  e.  On )
3 simplr 754 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  B )
4 oemapval.g . . . . . . 7  |-  ( ph  ->  G  e.  S )
5 cantnfs.s . . . . . . . 8  |-  S  =  dom  ( A CNF  B
)
6 cantnfs.a . . . . . . . 8  |-  ( ph  ->  A  e.  On )
75, 6, 1cantnfs 8085 . . . . . . 7  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  G finSupp 
(/) ) ) )
84, 7mpbid 210 . . . . . 6  |-  ( ph  ->  ( G : B --> A  /\  G finSupp  (/) ) )
98simpld 459 . . . . 5  |-  ( ph  ->  G : B --> A )
10 ffn 5731 . . . . 5  |-  ( G : B --> A  ->  G  Fn  B )
119, 10syl 16 . . . 4  |-  ( ph  ->  G  Fn  B )
1211ad3antrrr 729 . . 3  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  G  Fn  B )
13 dffn3 5738 . . 3  |-  ( G  Fn  B  <->  G : B
--> ran  G )
1412, 13sylib 196 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  G : B --> ran  G
)
15 oemapval.t . . . . . . 7  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
16 oemapval.f . . . . . . 7  |-  ( ph  ->  F  e.  S )
17 oemapvali.r . . . . . . 7  |-  ( ph  ->  F T G )
18 oemapvali.x . . . . . . 7  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
195, 6, 1, 15, 16, 4, 17, 18oemapvali 8103 . . . . . 6  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
2019simp3d 1010 . . . . 5  |-  ( ph  ->  A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) )
2120ad3antrrr 729 . . . 4  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) )
22 cantnflem1.o . . . . . . 7  |-  O  = OrdIso
(  _E  ,  ( G supp  (/) ) )
235, 6, 1, 15, 16, 4, 17, 18, 22cantnflem1b 8105 . . . . . 6  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  X  C_  ( O `  u )
)
2423ad2antrr 725 . . . . 5  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  X  C_  ( O `  u ) )
25 simprr 756 . . . . 5  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( O `  u
)  e.  x )
2619simp1d 1008 . . . . . . . 8  |-  ( ph  ->  X  e.  B )
27 onelon 4903 . . . . . . . 8  |-  ( ( B  e.  On  /\  X  e.  B )  ->  X  e.  On )
281, 26, 27syl2anc 661 . . . . . . 7  |-  ( ph  ->  X  e.  On )
2928ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  X  e.  On )
30 onss 6610 . . . . . . . . . 10  |-  ( B  e.  On  ->  B  C_  On )
311, 30syl 16 . . . . . . . . 9  |-  ( ph  ->  B  C_  On )
3231sselda 3504 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  On )
3332adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  ->  x  e.  On )
3433adantr 465 . . . . . 6  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  On )
35 ontr2 4925 . . . . . 6  |-  ( ( X  e.  On  /\  x  e.  On )  ->  ( ( X  C_  ( O `  u )  /\  ( O `  u )  e.  x
)  ->  X  e.  x ) )
3629, 34, 35syl2anc 661 . . . . 5  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( ( X  C_  ( O `  u )  /\  ( O `  u )  e.  x
)  ->  X  e.  x ) )
3724, 25, 36mp2and 679 . . . 4  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  X  e.  x )
38 eleq2 2540 . . . . . 6  |-  ( w  =  x  ->  ( X  e.  w  <->  X  e.  x ) )
39 fveq2 5866 . . . . . . 7  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
40 fveq2 5866 . . . . . . 7  |-  ( w  =  x  ->  ( G `  w )  =  ( G `  x ) )
4139, 40eqeq12d 2489 . . . . . 6  |-  ( w  =  x  ->  (
( F `  w
)  =  ( G `
 w )  <->  ( F `  x )  =  ( G `  x ) ) )
4238, 41imbi12d 320 . . . . 5  |-  ( w  =  x  ->  (
( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  <-> 
( X  e.  x  ->  ( F `  x
)  =  ( G `
 x ) ) ) )
4342rspcv 3210 . . . 4  |-  ( x  e.  B  ->  ( A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  ->  ( X  e.  x  ->  ( F `  x )  =  ( G `  x ) ) ) )
443, 21, 37, 43syl3c 61 . . 3  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( F `  x
)  =  ( G `
 x ) )
45 simprl 755 . . 3  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( F `  x
)  =/=  (/) )
4644, 45eqnetrrd 2761 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( G `  x
)  =/=  (/) )
47 fvn0elsupp 6917 . 2  |-  ( ( ( B  e.  On  /\  x  e.  B )  /\  ( G : B
--> ran  G  /\  ( G `  x )  =/=  (/) ) )  ->  x  e.  ( G supp  (/) ) )
482, 3, 14, 46, 47syl22anc 1229 1  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  ( G supp  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    C_ wss 3476   (/)c0 3785   U.cuni 4245   class class class wbr 4447   {copab 4504    _E cep 4789   Oncon0 4878   suc csuc 4880   `'ccnv 4998   dom cdm 4999   ran crn 5000    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   supp csupp 6901   finSupp cfsupp 7829  OrdIsocoi 7934   CNF ccnf 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-supp 6902  df-recs 7042  df-rdg 7076  df-seqom 7113  df-1o 7130  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-cnf 8079
This theorem is referenced by:  cantnflem1  8108
  Copyright terms: Public domain W3C validator