MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1c Structured version   Unicode version

Theorem cantnflem1c 7900
Description: Lemma for cantnf 7906. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.f  |-  ( ph  ->  F  e.  S )
oemapval.g  |-  ( ph  ->  G  e.  S )
oemapvali.r  |-  ( ph  ->  F T G )
oemapvali.x  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
cantnflem1.o  |-  O  = OrdIso
(  _E  ,  ( G supp  (/) ) )
Assertion
Ref Expression
cantnflem1c  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  ( G supp  (/) ) )
Distinct variable groups:    u, c, w, x, y, z, B    A, c, u, w, x, y, z    T, c, u    u, F, w, x, y, z    S, c, u, x, y, z    G, c, u, w, x, y, z    u, O, w, x, y, z    ph, u, x, y, z   
u, X, w, x, y, z    F, c    ph, c
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)    O( c)    X( c)

Proof of Theorem cantnflem1c
StepHypRef Expression
1 cantnfs.b . . 3  |-  ( ph  ->  B  e.  On )
21ad3antrrr 729 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  B  e.  On )
3 simplr 754 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  B )
4 oemapval.g . . . . . . 7  |-  ( ph  ->  G  e.  S )
5 cantnfs.s . . . . . . . 8  |-  S  =  dom  ( A CNF  B
)
6 cantnfs.a . . . . . . . 8  |-  ( ph  ->  A  e.  On )
75, 6, 1cantnfs 7879 . . . . . . 7  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  G finSupp 
(/) ) ) )
84, 7mpbid 210 . . . . . 6  |-  ( ph  ->  ( G : B --> A  /\  G finSupp  (/) ) )
98simpld 459 . . . . 5  |-  ( ph  ->  G : B --> A )
10 ffn 5564 . . . . 5  |-  ( G : B --> A  ->  G  Fn  B )
119, 10syl 16 . . . 4  |-  ( ph  ->  G  Fn  B )
1211ad3antrrr 729 . . 3  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  G  Fn  B )
13 dffn3 5571 . . 3  |-  ( G  Fn  B  <->  G : B
--> ran  G )
1412, 13sylib 196 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  G : B --> ran  G
)
15 oemapval.t . . . . . . 7  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
16 oemapval.f . . . . . . 7  |-  ( ph  ->  F  e.  S )
17 oemapvali.r . . . . . . 7  |-  ( ph  ->  F T G )
18 oemapvali.x . . . . . . 7  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
195, 6, 1, 15, 16, 4, 17, 18oemapvali 7897 . . . . . 6  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
2019simp3d 1002 . . . . 5  |-  ( ph  ->  A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) )
2120ad3antrrr 729 . . . 4  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) )
22 cantnflem1.o . . . . . . 7  |-  O  = OrdIso
(  _E  ,  ( G supp  (/) ) )
235, 6, 1, 15, 16, 4, 17, 18, 22cantnflem1b 7899 . . . . . 6  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  X  C_  ( O `  u )
)
2423ad2antrr 725 . . . . 5  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  X  C_  ( O `  u ) )
25 simprr 756 . . . . 5  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( O `  u
)  e.  x )
2619simp1d 1000 . . . . . . . 8  |-  ( ph  ->  X  e.  B )
27 onelon 4749 . . . . . . . 8  |-  ( ( B  e.  On  /\  X  e.  B )  ->  X  e.  On )
281, 26, 27syl2anc 661 . . . . . . 7  |-  ( ph  ->  X  e.  On )
2928ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  X  e.  On )
30 onss 6407 . . . . . . . . . 10  |-  ( B  e.  On  ->  B  C_  On )
311, 30syl 16 . . . . . . . . 9  |-  ( ph  ->  B  C_  On )
3231sselda 3361 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  On )
3332adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  ->  x  e.  On )
3433adantr 465 . . . . . 6  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  On )
35 ontr2 4771 . . . . . 6  |-  ( ( X  e.  On  /\  x  e.  On )  ->  ( ( X  C_  ( O `  u )  /\  ( O `  u )  e.  x
)  ->  X  e.  x ) )
3629, 34, 35syl2anc 661 . . . . 5  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( ( X  C_  ( O `  u )  /\  ( O `  u )  e.  x
)  ->  X  e.  x ) )
3724, 25, 36mp2and 679 . . . 4  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  X  e.  x )
38 eleq2 2504 . . . . . 6  |-  ( w  =  x  ->  ( X  e.  w  <->  X  e.  x ) )
39 fveq2 5696 . . . . . . 7  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
40 fveq2 5696 . . . . . . 7  |-  ( w  =  x  ->  ( G `  w )  =  ( G `  x ) )
4139, 40eqeq12d 2457 . . . . . 6  |-  ( w  =  x  ->  (
( F `  w
)  =  ( G `
 w )  <->  ( F `  x )  =  ( G `  x ) ) )
4238, 41imbi12d 320 . . . . 5  |-  ( w  =  x  ->  (
( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  <-> 
( X  e.  x  ->  ( F `  x
)  =  ( G `
 x ) ) ) )
4342rspcv 3074 . . . 4  |-  ( x  e.  B  ->  ( A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  ->  ( X  e.  x  ->  ( F `  x )  =  ( G `  x ) ) ) )
443, 21, 37, 43syl3c 61 . . 3  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( F `  x
)  =  ( G `
 x ) )
45 simprl 755 . . 3  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( F `  x
)  =/=  (/) )
4644, 45eqnetrrd 2633 . 2  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  -> 
( G `  x
)  =/=  (/) )
47 fvn0elsupp 6711 . 2  |-  ( ( ( B  e.  On  /\  x  e.  B )  /\  ( G : B
--> ran  G  /\  ( G `  x )  =/=  (/) ) )  ->  x  e.  ( G supp  (/) ) )
482, 3, 14, 46, 47syl22anc 1219 1  |-  ( ( ( ( ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X )  C_  u
) )  /\  x  e.  B )  /\  (
( F `  x
)  =/=  (/)  /\  ( O `  u )  e.  x ) )  ->  x  e.  ( G supp  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721   {crab 2724    C_ wss 3333   (/)c0 3642   U.cuni 4096   class class class wbr 4297   {copab 4354    _E cep 4635   Oncon0 4724   suc csuc 4726   `'ccnv 4844   dom cdm 4845   ran crn 4846    Fn wfn 5418   -->wf 5419   ` cfv 5423  (class class class)co 6096   supp csupp 6695   finSupp cfsupp 7625  OrdIsocoi 7728   CNF ccnf 7872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-supp 6696  df-recs 6837  df-rdg 6871  df-seqom 6908  df-1o 6925  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-oi 7729  df-cnf 7873
This theorem is referenced by:  cantnflem1  7902
  Copyright terms: Public domain W3C validator