MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Unicode version

Theorem cantnfle 8079
Description: A lower bound on the CNF function. Since  ( ( A CNF 
B ) `  F
) is defined as the sum of  ( A  ^o  x )  .o  ( F `  x ) over all  x in the support of  F, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all  C  e.  B instead of just those  C in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnfcl.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cantnfcl.f  |-  ( ph  ->  F  e.  S )
cantnfval.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
cantnfle.c  |-  ( ph  ->  C  e.  B )
Assertion
Ref Expression
cantnfle  |-  ( ph  ->  ( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( ( A CNF  B ) `  F
) )
Distinct variable groups:    z, k, B    z, C    A, k,
z    k, F, z    S, k, z    k, G, z    ph, k, z
Allowed substitution hints:    C( k)    H( z, k)

Proof of Theorem cantnfle
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6283 . . 3  |-  ( ( F `  C )  =  (/)  ->  ( ( A  ^o  C )  .o  ( F `  C ) )  =  ( ( A  ^o  C )  .o  (/) ) )
21sseq1d 3524 . 2  |-  ( ( F `  C )  =  (/)  ->  ( ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( ( A CNF 
B ) `  F
)  <->  ( ( A  ^o  C )  .o  (/) )  C_  ( ( A CNF  B ) `  F ) ) )
3 cantnfs.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  On )
4 suppssdm 6904 . . . . . . . . . . 11  |-  ( F supp  (/) )  C_  dom  F
5 cantnfcl.f . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  S )
6 cantnfs.s . . . . . . . . . . . . . . 15  |-  S  =  dom  ( A CNF  B
)
7 cantnfs.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  On )
86, 7, 3cantnfs 8074 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  F finSupp 
(/) ) ) )
95, 8mpbid 210 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F : B --> A  /\  F finSupp  (/) ) )
109simpld 459 . . . . . . . . . . . 12  |-  ( ph  ->  F : B --> A )
11 fdm 5726 . . . . . . . . . . . 12  |-  ( F : B --> A  ->  dom  F  =  B )
1210, 11syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  B )
134, 12syl5sseq 3545 . . . . . . . . . 10  |-  ( ph  ->  ( F supp  (/) )  C_  B )
143, 13ssexd 4587 . . . . . . . . 9  |-  ( ph  ->  ( F supp  (/) )  e. 
_V )
15 cantnfcl.g . . . . . . . . . . 11  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
166, 7, 3, 15, 5cantnfcl 8075 . . . . . . . . . 10  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom  G  e.  om ) )
1716simpld 459 . . . . . . . . 9  |-  ( ph  ->  _E  We  ( F supp  (/) ) )
1815oiiso 7951 . . . . . . . . 9  |-  ( ( ( F supp  (/) )  e. 
_V  /\  _E  We  ( F supp  (/) ) )  ->  G  Isom  _E  ,  _E  ( dom  G , 
( F supp  (/) ) ) )
1914, 17, 18syl2anc 661 . . . . . . . 8  |-  ( ph  ->  G  Isom  _E  ,  _E  ( dom  G ,  ( F supp  (/) ) ) )
20 isof1o 6200 . . . . . . . 8  |-  ( G 
Isom  _E  ,  _E  ( dom  G ,  ( F supp  (/) ) )  ->  G : dom  G -1-1-onto-> ( F supp  (/) ) )
2119, 20syl 16 . . . . . . 7  |-  ( ph  ->  G : dom  G -1-1-onto-> ( F supp 
(/) ) )
2221adantr 465 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  G : dom  G -1-1-onto-> ( F supp  (/) ) )
23 f1ocnv 5819 . . . . . 6  |-  ( G : dom  G -1-1-onto-> ( F supp  (/) )  ->  `' G : ( F supp  (/) ) -1-1-onto-> dom  G
)
24 f1of 5807 . . . . . 6  |-  ( `' G : ( F supp  (/) ) -1-1-onto-> dom  G  ->  `' G : ( F supp  (/) ) --> dom 
G )
2522, 23, 243syl 20 . . . . 5  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  `' G : ( F supp  (/) ) --> dom  G )
26 cantnfle.c . . . . . . 7  |-  ( ph  ->  C  e.  B )
2726anim1i 568 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( C  e.  B  /\  ( F `  C
)  =/=  (/) ) )
2810adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  F : B --> A )
29 ffn 5722 . . . . . . . 8  |-  ( F : B --> A  ->  F  Fn  B )
3028, 29syl 16 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  F  Fn  B )
313adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  B  e.  On )
32 0ex 4570 . . . . . . . 8  |-  (/)  e.  _V
3332a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  (/) 
e.  _V )
34 elsuppfn 6899 . . . . . . 7  |-  ( ( F  Fn  B  /\  B  e.  On  /\  (/)  e.  _V )  ->  ( C  e.  ( F supp  (/) )  <->  ( C  e.  B  /\  ( F `  C )  =/=  (/) ) ) )
3530, 31, 33, 34syl3anc 1223 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( C  e.  ( F supp  (/) )  <->  ( C  e.  B  /\  ( F `  C )  =/=  (/) ) ) )
3627, 35mpbird 232 . . . . 5  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  C  e.  ( F supp  (/) ) )
3725, 36ffvelrnd 6013 . . . 4  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( `' G `  C )  e.  dom  G )
3816simprd 463 . . . . . 6  |-  ( ph  ->  dom  G  e.  om )
3938adantr 465 . . . . 5  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  dom  G  e.  om )
40 eqimss 3549 . . . . . . . . . 10  |-  ( x  =  dom  G  ->  x  C_  dom  G )
4140biantrurd 508 . . . . . . . . 9  |-  ( x  =  dom  G  -> 
( ( `' G `  C )  e.  x  <->  ( x  C_  dom  G  /\  ( `' G `  C )  e.  x ) ) )
42 eleq2 2533 . . . . . . . . 9  |-  ( x  =  dom  G  -> 
( ( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  dom  G ) )
4341, 42bitr3d 255 . . . . . . . 8  |-  ( x  =  dom  G  -> 
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  <->  ( `' G `  C )  e.  dom  G ) )
44 fveq2 5857 . . . . . . . . 9  |-  ( x  =  dom  G  -> 
( H `  x
)  =  ( H `
 dom  G )
)
4544sseq2d 3525 . . . . . . . 8  |-  ( x  =  dom  G  -> 
( ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )  <->  ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  dom  G ) ) )
4643, 45imbi12d 320 . . . . . . 7  |-  ( x  =  dom  G  -> 
( ( ( x 
C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) )  <->  ( ( `' G `  C )  e.  dom  G  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  dom  G ) ) ) )
4746imbi2d 316 . . . . . 6  |-  ( x  =  dom  G  -> 
( ( ( ph  /\  ( F `  C
)  =/=  (/) )  -> 
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) ) )  <-> 
( ( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( `' G `  C )  e.  dom  G  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  dom  G ) ) ) ) )
48 sseq1 3518 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x 
C_  dom  G  <->  (/)  C_  dom  G ) )
49 eleq2 2533 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  (/) ) )
5048, 49anbi12d 710 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  <->  ( (/)  C_  dom  G  /\  ( `' G `  C )  e.  (/) ) ) )
51 fveq2 5857 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( H `
 x )  =  ( H `  (/) ) )
5251sseq2d 3525 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  x )  <->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  (/) ) ) )
5350, 52imbi12d 320 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x
)  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )
)  <->  ( ( (/)  C_ 
dom  G  /\  ( `' G `  C )  e.  (/) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  (/) ) ) ) )
54 sseq1 3518 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  C_  dom  G  <->  y  C_  dom  G ) )
55 eleq2 2533 . . . . . . . . 9  |-  ( x  =  y  ->  (
( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  y ) )
5654, 55anbi12d 710 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  C_  dom  G  /\  ( `' G `  C )  e.  x
)  <->  ( y  C_  dom  G  /\  ( `' G `  C )  e.  y ) ) )
57 fveq2 5857 . . . . . . . . 9  |-  ( x  =  y  ->  ( H `  x )  =  ( H `  y ) )
5857sseq2d 3525 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x )  <->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  y )
) )
5956, 58imbi12d 320 . . . . . . 7  |-  ( x  =  y  ->  (
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) )  <->  ( (
y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) ) ) )
60 sseq1 3518 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( x  C_  dom  G  <->  suc  y  C_  dom  G
) )
61 eleq2 2533 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  suc  y ) )
6260, 61anbi12d 710 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  <->  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  suc  y ) ) )
63 fveq2 5857 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( H `  x
)  =  ( H `
 suc  y )
)
6463sseq2d 3525 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )  <->  ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
6562, 64imbi12d 320 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ( x 
C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) )  <->  ( ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) ) )
66 noel 3782 . . . . . . . . . 10  |-  -.  ( `' G `  C )  e.  (/)
6766pm2.21i 131 . . . . . . . . 9  |-  ( ( `' G `  C )  e.  (/)  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  (/) ) )
6867adantl 466 . . . . . . . 8  |-  ( (
(/)  C_  dom  G  /\  ( `' G `  C )  e.  (/) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  (/) ) )
6968a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( (/)  C_  dom  G  /\  ( `' G `  C )  e.  (/) )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  (/) ) ) )
70 fvex 5867 . . . . . . . . . . . 12  |-  ( `' G `  C )  e.  _V
7170elsuc 4940 . . . . . . . . . . 11  |-  ( ( `' G `  C )  e.  suc  y  <->  ( ( `' G `  C )  e.  y  \/  ( `' G `  C )  =  y ) )
72 sssucid 4948 . . . . . . . . . . . . . . . . 17  |-  y  C_  suc  y
73 sstr 3505 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  suc  y  /\  suc  y  C_  dom  G
)  ->  y  C_  dom  G )
7472, 73mpan 670 . . . . . . . . . . . . . . . 16  |-  ( suc  y  C_  dom  G  -> 
y  C_  dom  G )
7574ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  y  C_ 
dom  G )
76 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  ( `' G `  C )  e.  y )
77 pm2.27 39 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( ( y 
C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) ) )
7875, 76, 77syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) ) )
79 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
8079cantnfvalf 8073 . . . . . . . . . . . . . . . . . . . 20  |-  H : om
--> On
8180ffvelrni 6011 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  om  ->  ( H `  y )  e.  On )
8281ad2antlr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  y )  e.  On )
837ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  A  e.  On )
843ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  B  e.  On )
8513ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( F supp  (/) )  C_  B )
86 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  suc  y  C_  dom  G )
87 sucidg 4949 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  om  ->  y  e.  suc  y )
8887ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  y  e.  suc  y )
8986, 88sseldd 3498 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  y  e.  dom  G )
9015oif 7944 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  G : dom  G --> ( F supp  (/) )
9190ffvelrni 6011 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  dom  G  -> 
( G `  y
)  e.  ( F supp  (/) ) )
9289, 91syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( G `  y )  e.  ( F supp  (/) ) )
9385, 92sseldd 3498 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( G `  y )  e.  B
)
94 onelon 4896 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  On  /\  ( G `  y )  e.  B )  -> 
( G `  y
)  e.  On )
9584, 93, 94syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( G `  y )  e.  On )
96 oecl 7177 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  ( G `  y )  e.  On )  -> 
( A  ^o  ( G `  y )
)  e.  On )
9783, 95, 96syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( A  ^o  ( G `  y ) )  e.  On )
9810ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  F : B --> A )
9998, 93ffvelrnd 6013 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( F `  ( G `  y ) )  e.  A )
100 onelon 4896 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  ( F `  ( G `
 y ) )  e.  A )  -> 
( F `  ( G `  y )
)  e.  On )
10183, 99, 100syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( F `  ( G `  y ) )  e.  On )
102 omcl 7176 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  ^o  ( G `  y )
)  e.  On  /\  ( F `  ( G `
 y ) )  e.  On )  -> 
( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  e.  On )
10397, 101, 102syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( A  ^o  ( G `  y ) )  .o  ( F `  ( G `  y )
) )  e.  On )
104 oaword2 7192 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( H `  y
)  e.  On  /\  ( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  e.  On )  -> 
( H `  y
)  C_  ( (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
10582, 103, 104syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  y )  C_  (
( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
106 simplll 757 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ph )
107 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  y  e.  om )
1086, 7, 3, 15, 5, 79cantnfsuc 8078 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  om )  ->  ( H `  suc  y )  =  ( ( ( A  ^o  ( G `  y ) )  .o  ( F `  ( G `  y )
) )  +o  ( H `  y )
) )
109106, 107, 108syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  suc  y )  =  ( ( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
110105, 109sseqtr4d 3534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  y )  C_  ( H `  suc  y ) )
111 sstr 3505 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y )  /\  ( H `  y )  C_  ( H `  suc  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) )
112111expcom 435 . . . . . . . . . . . . . . . 16  |-  ( ( H `  y ) 
C_  ( H `  suc  y )  ->  (
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
113110, 112syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( ( A  ^o  C )  .o  ( F `  C ) )  C_  ( H `  y )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  suc  y ) ) )
114113adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  (
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
11578, 114syld 44 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) )
116115expr 615 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  e.  y  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
117 simprr 756 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( `' G `  C )  =  y )
118117fveq2d 5861 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( G `  ( `' G `  C )
)  =  ( G `
 y ) )
119 f1ocnvfv2 6162 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G : dom  G -1-1-onto-> ( F supp 
(/) )  /\  C  e.  ( F supp  (/) ) )  ->  ( G `  ( `' G `  C ) )  =  C )
12022, 36, 119syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( G `  ( `' G `  C ) )  =  C )
121120ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( G `  ( `' G `  C )
)  =  C )
122118, 121eqtr3d 2503 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( G `  y )  =  C )
123122oveq2d 6291 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( A  ^o  ( G `  y ) )  =  ( A  ^o  C
) )
124122fveq2d 5861 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( F `  ( G `  y ) )  =  ( F `  C
) )
125123, 124oveq12d 6293 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) )  =  ( ( A  ^o  C )  .o  ( F `  C
) ) )
126 oaword1 7191 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  e.  On  /\  ( H `  y )  e.  On )  ->  (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) ) 
C_  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
127103, 82, 126syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( A  ^o  ( G `  y ) )  .o  ( F `  ( G `  y )
) )  C_  (
( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
128127adantrr 716 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) ) 
C_  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
129125, 128eqsstr3d 3532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
130109adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( H `  suc  y )  =  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
131129, 130sseqtr4d 3534 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) )
132131expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  =  y  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
133132a1dd 46 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  =  y  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
134116, 133jaod 380 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( ( `' G `  C )  e.  y  \/  ( `' G `  C )  =  y )  -> 
( ( ( y 
C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
13571, 134syl5bi 217 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  e.  suc  y  -> 
( ( ( y 
C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
136135expimpd 603 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  ->  (
( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  ( ( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
137136com23 78 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( suc  y  C_ 
dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  suc  y ) ) ) )
138137expcom 435 . . . . . . 7  |-  ( y  e.  om  ->  (
( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( suc  y  C_ 
dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  suc  y ) ) ) ) )
13953, 59, 65, 69, 138finds2 6699 . . . . . 6  |-  ( x  e.  om  ->  (
( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( x  C_  dom  G  /\  ( `' G `  C )  e.  x
)  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )
) ) )
14047, 139vtoclga 3170 . . . . 5  |-  ( dom 
G  e.  om  ->  ( ( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( `' G `  C )  e.  dom  G  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  dom  G ) ) ) )
14139, 140mpcom 36 . . . 4  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( `' G `  C )  e.  dom  G  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  dom  G ) ) )
14237, 141mpd 15 . . 3  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  dom  G ) )
1436, 7, 3, 15, 5, 79cantnfval 8076 . . . 4  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
144143adantr 465 . . 3  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
145142, 144sseqtr4d 3534 . 2  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( ( A CNF  B ) `  F
) )
146 onelon 4896 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  B )  ->  C  e.  On )
1473, 26, 146syl2anc 661 . . . . 5  |-  ( ph  ->  C  e.  On )
148 oecl 7177 . . . . 5  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  C
)  e.  On )
1497, 147, 148syl2anc 661 . . . 4  |-  ( ph  ->  ( A  ^o  C
)  e.  On )
150 om0 7157 . . . 4  |-  ( ( A  ^o  C )  e.  On  ->  (
( A  ^o  C
)  .o  (/) )  =  (/) )
151149, 150syl 16 . . 3  |-  ( ph  ->  ( ( A  ^o  C )  .o  (/) )  =  (/) )
152 0ss 3807 . . 3  |-  (/)  C_  (
( A CNF  B ) `
 F )
153151, 152syl6eqss 3547 . 2  |-  ( ph  ->  ( ( A  ^o  C )  .o  (/) )  C_  ( ( A CNF  B
) `  F )
)
1542, 145, 153pm2.61ne 2775 1  |-  ( ph  ->  ( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( ( A CNF  B ) `  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   _Vcvv 3106    C_ wss 3469   (/)c0 3778   class class class wbr 4440    _E cep 4782    We wwe 4830   Oncon0 4871   suc csuc 4873   `'ccnv 4991   dom cdm 4992    Fn wfn 5574   -->wf 5575   -1-1-onto->wf1o 5578   ` cfv 5579    Isom wiso 5580  (class class class)co 6275    |-> cmpt2 6277   omcom 6671   supp csupp 6891  seq𝜔cseqom 7102    +o coa 7117    .o comu 7118    ^o coe 7119   finSupp cfsupp 7818  OrdIsocoi 7923   CNF ccnf 8067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-seqom 7103  df-1o 7120  df-oadd 7124  df-omul 7125  df-oexp 7126  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-oi 7924  df-cnf 8068
This theorem is referenced by:  cantnflem3  8099
  Copyright terms: Public domain W3C validator