MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfdmOLD Structured version   Unicode version

Theorem cantnfdmOLD 7984
Description: The domain of the Cantor normal form function (in later lemmas we will use  dom  ( A CNF 
B ) to abbreviate "the set of finitely supported functions from  B to  A"). (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnfdm 7982 as of 28-Jun-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cantnffvalOLD.1  |-  S  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }
cantnffvalOLD.2  |-  ( ph  ->  A  e.  On )
cantnffvalOLD.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
cantnfdmOLD  |-  ( ph  ->  dom  ( A CNF  B
)  =  S )
Distinct variable groups:    A, g    B, g
Allowed substitution hints:    ph( g)    S( g)

Proof of Theorem cantnfdmOLD
Dummy variables  f  h  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffvalOLD.1 . . . 4  |-  S  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }
2 cantnffvalOLD.2 . . . 4  |-  ( ph  ->  A  e.  On )
3 cantnffvalOLD.3 . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3cantnffvalOLD 7983 . . 3  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
54dmeqd 5151 . 2  |-  ( ph  ->  dom  ( A CNF  B
)  =  dom  (
f  e.  S  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
6 fvex 5810 . . . . 5  |-  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  h )  e.  _V
76csbex 4534 . . . 4  |-  [_OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  e.  _V
87rgenw 2901 . . 3  |-  A. f  e.  S  [_OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  e.  _V
9 dmmptg 5444 . . 3  |-  ( A. f  e.  S  [_OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  e.  _V  ->  dom  ( f  e.  S  |-> 
[_OrdIso (  _E  ,  ( `' f " ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  S )
108, 9ax-mp 5 . 2  |-  dom  (
f  e.  S  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  S
115, 10syl6eq 2511 1  |-  ( ph  ->  dom  ( A CNF  B
)  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   A.wral 2799   {crab 2803   _Vcvv 3078   [_csb 3396    \ cdif 3434   (/)c0 3746    |-> cmpt 4459    _E cep 4739   Oncon0 4828   `'ccnv 4948   dom cdm 4949   "cima 4952   ` cfv 5527  (class class class)co 6201    |-> cmpt2 6203  seq𝜔cseqom 7013   1oc1o 7024    +o coa 7028    .o comu 7029    ^o coe 7030    ^m cmap 7325   Fincfn 7421  OrdIsocoi 7835   CNF ccnf 7979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-supp 6802  df-recs 6943  df-rdg 6977  df-seqom 7014  df-1o 7031  df-map 7327  df-fsupp 7733  df-oi 7836  df-cnf 7980
This theorem is referenced by:  cantnfsOLD  8016  cantnfvalOLD  8018  wemapweOLD  8041  oef1oOLD  8043
  Copyright terms: Public domain W3C validator