MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfOLD Structured version   Unicode version

Theorem cantnfOLD 7919
Description: The Cantor Normal Form theorem. The function  ( A CNF  B ), which maps a finitely supported function from  B to  A to the sum  ( ( A  ^o  f ( a 1 ) )  o.  a 1 )  +o  ( ( A  ^o  f ( a 2 ) )  o.  a 2 )  +o 
... over all indexes  a  <  B such that  f ( a ) is nonzero, is an order isomorphism from the ordering  T of finitely supported functions to the set  ( A  ^o  B
) under the natural order. Setting 
A  =  om and letting  B be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 7881, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.) Obsolete version of cantnf 7897 as of 2-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1  |-  S  =  dom  ( A CNF  B
)
cantnfsOLD.2  |-  ( ph  ->  A  e.  On )
cantnfsOLD.3  |-  ( ph  ->  B  e.  On )
oemapvalOLD.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
Assertion
Ref Expression
cantnfOLD  |-  ( ph  ->  ( A CNF  B ) 
Isom  T ,  _E  ( S ,  ( A  ^o  B ) ) )
Distinct variable groups:    x, w, y, z, B    w, A, x, y, z    x, S, y, z    ph, x, y, z
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)

Proof of Theorem cantnfOLD
Dummy variables  f 
c  g  k  t  u  v  a  b  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfsOLD.1 . . 3  |-  S  =  dom  ( A CNF  B
)
2 cantnfsOLD.2 . . 3  |-  ( ph  ->  A  e.  On )
3 cantnfsOLD.3 . . 3  |-  ( ph  ->  B  e.  On )
4 oemapvalOLD.t . . 3  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
51, 2, 3, 4oemapso 7886 . 2  |-  ( ph  ->  T  Or  S )
6 oecl 6973 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
72, 3, 6syl2anc 656 . . . 4  |-  ( ph  ->  ( A  ^o  B
)  e.  On )
8 eloni 4725 . . . 4  |-  ( ( A  ^o  B )  e.  On  ->  Ord  ( A  ^o  B ) )
97, 8syl 16 . . 3  |-  ( ph  ->  Ord  ( A  ^o  B ) )
10 ordwe 4728 . . 3  |-  ( Ord  ( A  ^o  B
)  ->  _E  We  ( A  ^o  B ) )
11 weso 4707 . . 3  |-  (  _E  We  ( A  ^o  B )  ->  _E  Or  ( A  ^o  B
) )
12 sopo 4654 . . 3  |-  (  _E  Or  ( A  ^o  B )  ->  _E  Po  ( A  ^o  B
) )
139, 10, 11, 124syl 21 . 2  |-  ( ph  ->  _E  Po  ( A  ^o  B ) )
141, 2, 3cantnff 7878 . . 3  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
15 frn 5562 . . . . 5  |-  ( ( A CNF  B ) : S --> ( A  ^o  B )  ->  ran  ( A CNF  B )  C_  ( A  ^o  B
) )
1614, 15syl 16 . . . 4  |-  ( ph  ->  ran  ( A CNF  B
)  C_  ( A  ^o  B ) )
17 onss 6401 . . . . . . . 8  |-  ( ( A  ^o  B )  e.  On  ->  ( A  ^o  B )  C_  On )
187, 17syl 16 . . . . . . 7  |-  ( ph  ->  ( A  ^o  B
)  C_  On )
1918sseld 3352 . . . . . 6  |-  ( ph  ->  ( t  e.  ( A  ^o  B )  ->  t  e.  On ) )
20 eleq1 2501 . . . . . . . . . 10  |-  ( t  =  y  ->  (
t  e.  ( A  ^o  B )  <->  y  e.  ( A  ^o  B ) ) )
21 eleq1 2501 . . . . . . . . . 10  |-  ( t  =  y  ->  (
t  e.  ran  ( A CNF  B )  <->  y  e.  ran  ( A CNF  B ) ) )
2220, 21imbi12d 320 . . . . . . . . 9  |-  ( t  =  y  ->  (
( t  e.  ( A  ^o  B )  ->  t  e.  ran  ( A CNF  B )
)  <->  ( y  e.  ( A  ^o  B
)  ->  y  e.  ran  ( A CNF  B ) ) ) )
2322imbi2d 316 . . . . . . . 8  |-  ( t  =  y  ->  (
( ph  ->  ( t  e.  ( A  ^o  B )  ->  t  e.  ran  ( A CNF  B
) ) )  <->  ( ph  ->  ( y  e.  ( A  ^o  B )  ->  y  e.  ran  ( A CNF  B )
) ) ) )
24 r19.21v 2801 . . . . . . . . 9  |-  ( A. y  e.  t  ( ph  ->  ( y  e.  ( A  ^o  B
)  ->  y  e.  ran  ( A CNF  B ) ) )  <->  ( ph  ->  A. y  e.  t  ( y  e.  ( A  ^o  B )  ->  y  e.  ran  ( A CNF  B )
) ) )
25 ordelss 4731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  ( A  ^o  B )  /\  t  e.  ( A  ^o  B
) )  ->  t  C_  ( A  ^o  B
) )
269, 25sylan 468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  ( A  ^o  B ) )  ->  t  C_  ( A  ^o  B ) )
2726sselda 3353 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  t  e.  ( A  ^o  B
) )  /\  y  e.  t )  ->  y  e.  ( A  ^o  B
) )
28 pm5.5 336 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A  ^o  B )  ->  (
( y  e.  ( A  ^o  B )  ->  y  e.  ran  ( A CNF  B )
)  <->  y  e.  ran  ( A CNF  B )
) )
2927, 28syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( A  ^o  B
) )  /\  y  e.  t )  ->  (
( y  e.  ( A  ^o  B )  ->  y  e.  ran  ( A CNF  B )
)  <->  y  e.  ran  ( A CNF  B )
) )
3029ralbidva 2729 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  t  e.  ( A  ^o  B ) )  ->  ( A. y  e.  t  (
y  e.  ( A  ^o  B )  -> 
y  e.  ran  ( A CNF  B ) )  <->  A. y  e.  t  y  e.  ran  ( A CNF  B ) ) )
31 dfss3 3343 . . . . . . . . . . . . . . 15  |-  ( t 
C_  ran  ( A CNF  B )  <->  A. y  e.  t  y  e.  ran  ( A CNF  B ) )
3230, 31syl6bbr 263 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( A  ^o  B ) )  ->  ( A. y  e.  t  (
y  e.  ( A  ^o  B )  -> 
y  e.  ran  ( A CNF  B ) )  <->  t  C_  ran  ( A CNF  B ) ) )
33 eleq1 2501 . . . . . . . . . . . . . . . 16  |-  ( t  =  (/)  ->  ( t  e.  ran  ( A CNF 
B )  <->  (/)  e.  ran  ( A CNF  B )
) )
342adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  A  e.  On )
3534adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  t  =/=  (/) )  ->  A  e.  On )
363adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  B  e.  On )
3736adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  t  =/=  (/) )  ->  B  e.  On )
38 simplrl 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  t  =/=  (/) )  -> 
t  e.  ( A  ^o  B ) )
39 simplrr 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  t  =/=  (/) )  -> 
t  C_  ran  ( A CNF 
B ) )
407adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( A  ^o  B )  e.  On )
41 simprl 750 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  t  e.  ( A  ^o  B
) )
42 onelon 4740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  ^o  B
)  e.  On  /\  t  e.  ( A  ^o  B ) )  -> 
t  e.  On )
4340, 41, 42syl2anc 656 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  t  e.  On )
44 on0eln0 4770 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  On  ->  ( (/) 
e.  t  <->  t  =/=  (/) ) )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( (/) 
e.  t  <->  t  =/=  (/) ) )
4645biimpar 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  t  =/=  (/) )  ->  (/) 
e.  t )
47 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  U. |^| { c  e.  On  | 
t  e.  ( A  ^o  c ) }  =  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) }
48 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  U. |^|
{ c  e.  On  |  t  e.  ( A  ^o  c ) } ) ( d  = 
<. a ,  b >.  /\  ( ( ( A  ^o  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) } )  .o  a )  +o  b )  =  t ) )  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  U. |^|
{ c  e.  On  |  t  e.  ( A  ^o  c ) } ) ( d  = 
<. a ,  b >.  /\  ( ( ( A  ^o  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) } )  .o  a )  +o  b )  =  t ) )
49 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( 1st `  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) } ) ( d  =  <. a ,  b >.  /\  (
( ( A  ^o  U.
|^| { c  e.  On  |  t  e.  ( A  ^o  c ) } )  .o  a )  +o  b )  =  t ) ) )  =  ( 1st `  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  U. |^|
{ c  e.  On  |  t  e.  ( A  ^o  c ) } ) ( d  = 
<. a ,  b >.  /\  ( ( ( A  ^o  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) } )  .o  a )  +o  b )  =  t ) ) )
50 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) } ) ( d  =  <. a ,  b >.  /\  (
( ( A  ^o  U.
|^| { c  e.  On  |  t  e.  ( A  ^o  c ) } )  .o  a )  +o  b )  =  t ) ) )  =  ( 2nd `  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  U. |^|
{ c  e.  On  |  t  e.  ( A  ^o  c ) } ) ( d  = 
<. a ,  b >.  /\  ( ( ( A  ^o  U. |^| { c  e.  On  |  t  e.  ( A  ^o  c ) } )  .o  a )  +o  b )  =  t ) ) )
511, 35, 37, 4, 38, 39, 46, 47, 48, 49, 50cantnflem4OLD 7918 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  t  =/=  (/) )  -> 
t  e.  ran  ( A CNF  B ) )
52 fconstmpt 4878 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  X.  { (/) } )  =  ( y  e.  B  |->  (/) )
5352mptpreima 5328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' ( B  X.  { (/)
} ) " ( _V  \  1o ) )  =  { y  e.  B  |  (/)  e.  ( _V  \  1o ) }
54 neirr 2611 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  -.  (/)  =/=  (/)
55 dif1o 6936 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (/)  e.  ( _V  \  1o ) 
<->  ( (/)  e.  _V  /\  (/)  =/=  (/) ) )
5655simprbi 461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (/)  e.  ( _V  \  1o )  ->  (/)  =/=  (/) )
5754, 56mto 176 . . . . . . . . . . . . . . . . . . . . . . 23  |-  -.  (/)  e.  ( _V  \  1o )
5857rgenw 2781 . . . . . . . . . . . . . . . . . . . . . 22  |-  A. y  e.  B  -.  (/)  e.  ( _V  \  1o )
59 rabeq0 3656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { y  e.  B  |  (/) 
e.  ( _V  \  1o ) }  =  (/)  <->  A. y  e.  B  -.  (/) 
e.  ( _V  \  1o ) )
6058, 59mpbir 209 . . . . . . . . . . . . . . . . . . . . 21  |-  { y  e.  B  |  (/)  e.  ( _V  \  1o ) }  =  (/)
6153, 60eqtr2i 2462 . . . . . . . . . . . . . . . . . . . 20  |-  (/)  =  ( `' ( B  X.  { (/) } ) "
( _V  \  1o ) )
62 oieq2 7723 . . . . . . . . . . . . . . . . . . . 20  |-  ( (/)  =  ( `' ( B  X.  { (/) } ) " ( _V 
\  1o ) )  -> OrdIso (  _E  ,  (/) )  = OrdIso (  _E  , 
( `' ( B  X.  { (/) } )
" ( _V  \  1o ) ) ) )
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |- OrdIso (  _E  ,  (/) )  = OrdIso (  _E  ,  ( `' ( B  X.  { (/) } ) " ( _V 
\  1o ) ) )
64 ne0i 3640 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  B  ->  B  =/=  (/) )
65 ne0i 3640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  e.  ( A  ^o  B )  ->  ( A  ^o  B )  =/=  (/) )
6665ad2antrl 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( A  ^o  B )  =/=  (/) )
67 oveq1 6097 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
6867neeq1d 2619 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  =/=  (/)  <->  ( (/)  ^o  B
)  =/=  (/) ) )
6966, 68syl5ibcom 220 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( A  =  (/)  ->  ( (/) 
^o  B )  =/=  (/) ) )
7069necon2d 2659 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (
( (/)  ^o  B )  =  (/)  ->  A  =/=  (/) ) )
71 on0eln0 4770 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
72 oe0m1 6957 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
7371, 72bitr3d 255 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( B  e.  On  ->  ( B  =/=  (/)  <->  ( (/)  ^o  B
)  =  (/) ) )
7436, 73syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( B  =/=  (/)  <->  ( (/)  ^o  B
)  =  (/) ) )
75 on0eln0 4770 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
7634, 75syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
7770, 74, 763imtr4d 268 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( B  =/=  (/)  ->  (/)  e.  A
) )
7864, 77syl5 32 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (
y  e.  B  ->  (/) 
e.  A ) )
7978imp 429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
t  e.  ( A  ^o  B )  /\  t  C_  ran  ( A CNF 
B ) ) )  /\  y  e.  B
)  ->  (/)  e.  A
)
8079, 52fmptd 5864 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( B  X.  { (/) } ) : B --> A )
81 0fin 7536 . . . . . . . . . . . . . . . . . . . . . 22  |-  (/)  e.  Fin
8261, 81eqeltrri 2512 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' ( B  X.  { (/)
} ) " ( _V  \  1o ) )  e.  Fin
8382a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( `' ( B  X.  { (/) } ) "
( _V  \  1o ) )  e.  Fin )
841, 2, 3cantnfsOLD 7900 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( B  X.  { (/) } )  e.  S  <->  ( ( B  X.  { (/) } ) : B --> A  /\  ( `' ( B  X.  { (/) } ) "
( _V  \  1o ) )  e.  Fin ) ) )
8584adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (
( B  X.  { (/)
} )  e.  S  <->  ( ( B  X.  { (/)
} ) : B --> A  /\  ( `' ( B  X.  { (/) } ) " ( _V 
\  1o ) )  e.  Fin ) ) )
8680, 83, 85mpbir2and 908 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( B  X.  { (/) } )  e.  S )
87 eqid 2441 . . . . . . . . . . . . . . . . . . 19  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (/) ) `  k ) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k )
)  .o  ( ( B  X.  { (/) } ) `  (OrdIso (  _E  ,  (/) ) `  k
) ) )  +o  z ) ) ,  (/) )
881, 34, 36, 63, 86, 87cantnfvalOLD 7902 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (
( A CNF  B ) `
 ( B  X.  { (/) } ) )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (/) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  (/) ) ) )
89 0ex 4419 . . . . . . . . . . . . . . . . . . . . . 22  |-  (/)  e.  _V
90 we0 4711 . . . . . . . . . . . . . . . . . . . . . 22  |-  _E  We  (/)
91 eqid 2441 . . . . . . . . . . . . . . . . . . . . . . 23  |- OrdIso (  _E  ,  (/) )  = OrdIso (  _E  ,  (/) )
9291oien 7748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
(/)  e.  _V  /\  _E  We  (/) )  ->  dom OrdIso (  _E  ,  (/) )  ~~  (/) )
9389, 90, 92mp2an 667 . . . . . . . . . . . . . . . . . . . . 21  |-  dom OrdIso (  _E  ,  (/) )  ~~  (/)
94 en0 7368 . . . . . . . . . . . . . . . . . . . . 21  |-  ( dom OrdIso (  _E  ,  (/) )  ~~  (/)  <->  dom OrdIso (  _E  ,  (/) )  =  (/) )
9593, 94mpbi 208 . . . . . . . . . . . . . . . . . . . 20  |-  dom OrdIso (  _E  ,  (/) )  =  (/)
9695fveq2i 5691 . . . . . . . . . . . . . . . . . . 19  |-  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k )
)  .o  ( ( B  X.  { (/) } ) `  (OrdIso (  _E  ,  (/) ) `  k
) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  (/) ) )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (/) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) )
9787seqom0g 6907 . . . . . . . . . . . . . . . . . . . 20  |-  ( (/)  e.  _V  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (/) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/) )
9889, 97ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k )
)  .o  ( ( B  X.  { (/) } ) `  (OrdIso (  _E  ,  (/) ) `  k
) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/)
9996, 98eqtri 2461 . . . . . . . . . . . . . . . . . 18  |-  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  (/) ) `  k )
)  .o  ( ( B  X.  { (/) } ) `  (OrdIso (  _E  ,  (/) ) `  k
) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  (/) ) )  =  (/)
10088, 99syl6eq 2489 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (
( A CNF  B ) `
 ( B  X.  { (/) } ) )  =  (/) )
10114adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
102 ffn 5556 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A CNF  B ) : S --> ( A  ^o  B )  ->  ( A CNF  B )  Fn  S
)
103101, 102syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  ( A CNF  B )  Fn  S
)
104 fnfvelrn 5837 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A CNF  B )  Fn  S  /\  ( B  X.  { (/) } )  e.  S )  -> 
( ( A CNF  B
) `  ( B  X.  { (/) } ) )  e.  ran  ( A CNF 
B ) )
105103, 86, 104syl2anc 656 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (
( A CNF  B ) `
 ( B  X.  { (/) } ) )  e.  ran  ( A CNF 
B ) )
106100, 105eqeltrrd 2516 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  (/)  e.  ran  ( A CNF  B )
)
10733, 51, 106pm2.61ne 2684 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( t  e.  ( A  ^o  B
)  /\  t  C_  ran  ( A CNF  B ) ) )  ->  t  e.  ran  ( A CNF  B
) )
108107expr 612 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( A  ^o  B ) )  ->  ( t  C_ 
ran  ( A CNF  B
)  ->  t  e.  ran  ( A CNF  B ) ) )
10932, 108sylbid 215 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( A  ^o  B ) )  ->  ( A. y  e.  t  (
y  e.  ( A  ^o  B )  -> 
y  e.  ran  ( A CNF  B ) )  -> 
t  e.  ran  ( A CNF  B ) ) )
110109ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  ( A  ^o  B )  ->  ( A. y  e.  t  ( y  e.  ( A  ^o  B
)  ->  y  e.  ran  ( A CNF  B ) )  ->  t  e.  ran  ( A CNF  B ) ) ) )
111110com23 78 . . . . . . . . . . 11  |-  ( ph  ->  ( A. y  e.  t  ( y  e.  ( A  ^o  B
)  ->  y  e.  ran  ( A CNF  B ) )  ->  ( t  e.  ( A  ^o  B
)  ->  t  e.  ran  ( A CNF  B ) ) ) )
112111a2i 13 . . . . . . . . . 10  |-  ( (
ph  ->  A. y  e.  t  ( y  e.  ( A  ^o  B )  ->  y  e.  ran  ( A CNF  B )
) )  ->  ( ph  ->  ( t  e.  ( A  ^o  B
)  ->  t  e.  ran  ( A CNF  B ) ) ) )
113112a1i 11 . . . . . . . . 9  |-  ( t  e.  On  ->  (
( ph  ->  A. y  e.  t  ( y  e.  ( A  ^o  B
)  ->  y  e.  ran  ( A CNF  B ) ) )  ->  ( ph  ->  ( t  e.  ( A  ^o  B
)  ->  t  e.  ran  ( A CNF  B ) ) ) ) )
11424, 113syl5bi 217 . . . . . . . 8  |-  ( t  e.  On  ->  ( A. y  e.  t 
( ph  ->  ( y  e.  ( A  ^o  B )  ->  y  e.  ran  ( A CNF  B
) ) )  -> 
( ph  ->  ( t  e.  ( A  ^o  B )  ->  t  e.  ran  ( A CNF  B
) ) ) ) )
11523, 114tfis2 6466 . . . . . . 7  |-  ( t  e.  On  ->  ( ph  ->  ( t  e.  ( A  ^o  B
)  ->  t  e.  ran  ( A CNF  B ) ) ) )
116115com3l 81 . . . . . 6  |-  ( ph  ->  ( t  e.  ( A  ^o  B )  ->  ( t  e.  On  ->  t  e.  ran  ( A CNF  B ) ) ) )
11719, 116mpdd 40 . . . . 5  |-  ( ph  ->  ( t  e.  ( A  ^o  B )  ->  t  e.  ran  ( A CNF  B )
) )
118117ssrdv 3359 . . . 4  |-  ( ph  ->  ( A  ^o  B
)  C_  ran  ( A CNF 
B ) )
11916, 118eqssd 3370 . . 3  |-  ( ph  ->  ran  ( A CNF  B
)  =  ( A  ^o  B ) )
120 dffo2 5621 . . 3  |-  ( ( A CNF  B ) : S -onto-> ( A  ^o  B )  <->  ( ( A CNF  B ) : S --> ( A  ^o  B )  /\  ran  ( A CNF 
B )  =  ( A  ^o  B ) ) )
12114, 119, 120sylanbrc 659 . 2  |-  ( ph  ->  ( A CNF  B ) : S -onto-> ( A  ^o  B ) )
1222adantr 462 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  A  e.  On )
1233adantr 462 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  B  e.  On )
124 fveq2 5688 . . . . . . . . . . . 12  |-  ( z  =  t  ->  (
x `  z )  =  ( x `  t ) )
125 fveq2 5688 . . . . . . . . . . . 12  |-  ( z  =  t  ->  (
y `  z )  =  ( y `  t ) )
126124, 125eleq12d 2509 . . . . . . . . . . 11  |-  ( z  =  t  ->  (
( x `  z
)  e.  ( y `
 z )  <->  ( x `  t )  e.  ( y `  t ) ) )
127 eleq1 2501 . . . . . . . . . . . . 13  |-  ( z  =  t  ->  (
z  e.  w  <->  t  e.  w ) )
128127imbi1d 317 . . . . . . . . . . . 12  |-  ( z  =  t  ->  (
( z  e.  w  ->  ( x `  w
)  =  ( y `
 w ) )  <-> 
( t  e.  w  ->  ( x `  w
)  =  ( y `
 w ) ) ) )
129128ralbidv 2733 . . . . . . . . . . 11  |-  ( z  =  t  ->  ( A. w  e.  B  ( z  e.  w  ->  ( x `  w
)  =  ( y `
 w ) )  <->  A. w  e.  B  ( t  e.  w  ->  ( x `  w
)  =  ( y `
 w ) ) ) )
130126, 129anbi12d 705 . . . . . . . . . 10  |-  ( z  =  t  ->  (
( ( x `  z )  e.  ( y `  z )  /\  A. w  e.  B  ( z  e.  w  ->  ( x `  w )  =  ( y `  w ) ) )  <->  ( (
x `  t )  e.  ( y `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) ) )
131130cbvrexv 2946 . . . . . . . . 9  |-  ( E. z  e.  B  ( ( x `  z
)  e.  ( y `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( x `  w
)  =  ( y `
 w ) ) )  <->  E. t  e.  B  ( ( x `  t )  e.  ( y `  t )  /\  A. w  e.  B  ( t  e.  w  ->  ( x `  w )  =  ( y `  w ) ) ) )
132 fveq1 5687 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
x `  t )  =  ( u `  t ) )
133 fveq1 5687 . . . . . . . . . . . 12  |-  ( y  =  v  ->  (
y `  t )  =  ( v `  t ) )
134 eleq12 2503 . . . . . . . . . . . 12  |-  ( ( ( x `  t
)  =  ( u `
 t )  /\  ( y `  t
)  =  ( v `
 t ) )  ->  ( ( x `
 t )  e.  ( y `  t
)  <->  ( u `  t )  e.  ( v `  t ) ) )
135132, 133, 134syl2an 474 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ( x `  t )  e.  ( y `  t )  <-> 
( u `  t
)  e.  ( v `
 t ) ) )
136 fveq1 5687 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
x `  w )  =  ( u `  w ) )
137 fveq1 5687 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
y `  w )  =  ( v `  w ) )
138136, 137eqeqan12d 2456 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ( x `  w )  =  ( y `  w )  <-> 
( u `  w
)  =  ( v `
 w ) ) )
139138imbi2d 316 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ( t  e.  w  ->  ( x `  w )  =  ( y `  w ) )  <->  ( t  e.  w  ->  ( u `  w )  =  ( v `  w ) ) ) )
140139ralbidv 2733 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  ( A. w  e.  B  ( t  e.  w  ->  ( x `  w )  =  ( y `  w ) )  <->  A. w  e.  B  ( t  e.  w  ->  ( u `  w
)  =  ( v `
 w ) ) ) )
141135, 140anbi12d 705 . . . . . . . . . 10  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ( ( x `
 t )  e.  ( y `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) )  <->  ( (
u `  t )  e.  ( v `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( u `
 w )  =  ( v `  w
) ) ) ) )
142141rexbidv 2734 . . . . . . . . 9  |-  ( ( x  =  u  /\  y  =  v )  ->  ( E. t  e.  B  ( ( x `
 t )  e.  ( y `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) )  <->  E. t  e.  B  ( (
u `  t )  e.  ( v `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( u `
 w )  =  ( v `  w
) ) ) ) )
143131, 142syl5bb 257 . . . . . . . 8  |-  ( ( x  =  u  /\  y  =  v )  ->  ( E. z  e.  B  ( ( x `
 z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) )  <->  E. t  e.  B  ( (
u `  t )  e.  ( v `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( u `
 w )  =  ( v `  w
) ) ) ) )
144143cbvopabv 4358 . . . . . . 7  |-  { <. x ,  y >.  |  E. z  e.  B  (
( x `  z
)  e.  ( y `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( x `  w
)  =  ( y `
 w ) ) ) }  =  { <. u ,  v >.  |  E. t  e.  B  ( ( u `  t )  e.  ( v `  t )  /\  A. w  e.  B  ( t  e.  w  ->  ( u `  w )  =  ( v `  w ) ) ) }
1454, 144eqtri 2461 . . . . . 6  |-  T  =  { <. u ,  v
>.  |  E. t  e.  B  ( (
u `  t )  e.  ( v `  t
)  /\  A. w  e.  B  ( t  e.  w  ->  ( u `
 w )  =  ( v `  w
) ) ) }
146 simprll 756 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  f  e.  S )
147 simprlr 757 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  g  e.  S )
148 simprr 751 . . . . . 6  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  f T
g )
149 eqid 2441 . . . . . 6  |-  U. {
c  e.  B  | 
( f `  c
)  e.  ( g `
 c ) }  =  U. { c  e.  B  |  ( f `  c )  e.  ( g `  c ) }
150 eqid 2441 . . . . . 6  |- OrdIso (  _E  ,  ( `' g
" ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' g " ( _V  \  1o ) ) )
151 eqid 2441 . . . . . 6  |- seq𝜔 ( ( k  e. 
_V ,  t  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' g
" ( _V  \  1o ) ) ) `  k ) )  .o  ( g `  (OrdIso (  _E  ,  ( `' g " ( _V  \  1o ) ) ) `  k ) ) )  +o  t
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  t  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' g
" ( _V  \  1o ) ) ) `  k ) )  .o  ( g `  (OrdIso (  _E  ,  ( `' g " ( _V  \  1o ) ) ) `  k ) ) )  +o  t
) ) ,  (/) )
1521, 122, 123, 145, 146, 147, 148, 149, 150, 151cantnflem1OLD 7916 . . . . 5  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  ( ( A CNF  B ) `  f
)  e.  ( ( A CNF  B ) `  g ) )
153 fvex 5698 . . . . . 6  |-  ( ( A CNF  B ) `  g )  e.  _V
154153epelc 4630 . . . . 5  |-  ( ( ( A CNF  B ) `
 f )  _E  ( ( A CNF  B
) `  g )  <->  ( ( A CNF  B ) `
 f )  e.  ( ( A CNF  B
) `  g )
)
155152, 154sylibr 212 . . . 4  |-  ( (
ph  /\  ( (
f  e.  S  /\  g  e.  S )  /\  f T g ) )  ->  ( ( A CNF  B ) `  f
)  _E  ( ( A CNF  B ) `  g ) )
156155expr 612 . . 3  |-  ( (
ph  /\  ( f  e.  S  /\  g  e.  S ) )  -> 
( f T g  ->  ( ( A CNF 
B ) `  f
)  _E  ( ( A CNF  B ) `  g ) ) )
157156ralrimivva 2806 . 2  |-  ( ph  ->  A. f  e.  S  A. g  e.  S  ( f T g  ->  ( ( A CNF 
B ) `  f
)  _E  ( ( A CNF  B ) `  g ) ) )
158 soisoi 6016 . 2  |-  ( ( ( T  Or  S  /\  _E  Po  ( A  ^o  B ) )  /\  ( ( A CNF 
B ) : S -onto->
( A  ^o  B
)  /\  A. f  e.  S  A. g  e.  S  ( f T g  ->  (
( A CNF  B ) `
 f )  _E  ( ( A CNF  B
) `  g )
) ) )  -> 
( A CNF  B ) 
Isom  T ,  _E  ( S ,  ( A  ^o  B ) ) )
1595, 13, 121, 157, 158syl22anc 1214 1  |-  ( ph  ->  ( A CNF  B ) 
Isom  T ,  _E  ( S ,  ( A  ^o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    \ cdif 3322    C_ wss 3325   (/)c0 3634   {csn 3874   <.cop 3880   U.cuni 4088   |^|cint 4125   class class class wbr 4289   {copab 4346    _E cep 4626    Po wpo 4635    Or wor 4636    We wwe 4674   Ord word 4714   Oncon0 4715    X. cxp 4834   `'ccnv 4835   dom cdm 4836   ran crn 4837   "cima 4839   iotacio 5376    Fn wfn 5410   -->wf 5411   -onto->wfo 5413   ` cfv 5415    Isom wiso 5416  (class class class)co 6090    e. cmpt2 6092   1stc1st 6574   2ndc2nd 6575  seq𝜔cseqom 6898   1oc1o 6909    +o coa 6913    .o comu 6914    ^o coe 6915    ~~ cen 7303   Fincfn 7306  OrdIsocoi 7719   CNF ccnf 7863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-seqom 6899  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-oexp 6922  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-oi 7720  df-cnf 7864
This theorem is referenced by:  oemapweOLD  7920  cantnffval2OLD  7921
  Copyright terms: Public domain W3C validator