MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwe Structured version   Unicode version

Theorem canthwe 8830
Description: The set of well-orders of a set  A strictly dominates  A. A stronger form of canth2 7476. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.)
Hypothesis
Ref Expression
canthwe.1  |-  O  =  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }
Assertion
Ref Expression
canthwe  |-  ( A  e.  V  ->  A  ~<  O )
Distinct variable groups:    x, r, O    V, r, x    A, r, x

Proof of Theorem canthwe
Dummy variables  u  y  f  v  w  a  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . . . . . . 8  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  C_  A )
2 selpw 3879 . . . . . . . 8  |-  ( x  e.  ~P A  <->  x  C_  A
)
31, 2sylibr 212 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  ~P A )
4 simp2 989 . . . . . . . . 9  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  r  C_  ( x  X.  x
) )
5 xpss12 4957 . . . . . . . . . 10  |-  ( ( x  C_  A  /\  x  C_  A )  -> 
( x  X.  x
)  C_  ( A  X.  A ) )
61, 1, 5syl2anc 661 . . . . . . . . 9  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  (
x  X.  x ) 
C_  ( A  X.  A ) )
74, 6sstrd 3378 . . . . . . . 8  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  r  C_  ( A  X.  A
) )
8 selpw 3879 . . . . . . . 8  |-  ( r  e.  ~P ( A  X.  A )  <->  r  C_  ( A  X.  A
) )
97, 8sylibr 212 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  r  e.  ~P ( A  X.  A ) )
103, 9jca 532 . . . . . 6  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  (
x  e.  ~P A  /\  r  e.  ~P ( A  X.  A
) ) )
1110ssopab2i 4628 . . . . 5  |-  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) }  C_  {
<. x ,  r >.  |  ( x  e. 
~P A  /\  r  e.  ~P ( A  X.  A ) ) }
12 canthwe.1 . . . . 5  |-  O  =  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }
13 df-xp 4858 . . . . 5  |-  ( ~P A  X.  ~P ( A  X.  A ) )  =  { <. x ,  r >.  |  ( x  e.  ~P A  /\  r  e.  ~P ( A  X.  A
) ) }
1411, 12, 133sstr4i 3407 . . . 4  |-  O  C_  ( ~P A  X.  ~P ( A  X.  A
) )
15 pwexg 4488 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  _V )
16 xpexg 6519 . . . . . . 7  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
1716anidms 645 . . . . . 6  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
18 pwexg 4488 . . . . . 6  |-  ( ( A  X.  A )  e.  _V  ->  ~P ( A  X.  A
)  e.  _V )
1917, 18syl 16 . . . . 5  |-  ( A  e.  V  ->  ~P ( A  X.  A
)  e.  _V )
20 xpexg 6519 . . . . 5  |-  ( ( ~P A  e.  _V  /\ 
~P ( A  X.  A )  e.  _V )  ->  ( ~P A  X.  ~P ( A  X.  A ) )  e. 
_V )
2115, 19, 20syl2anc 661 . . . 4  |-  ( A  e.  V  ->  ( ~P A  X.  ~P ( A  X.  A ) )  e.  _V )
22 ssexg 4450 . . . 4  |-  ( ( O  C_  ( ~P A  X.  ~P ( A  X.  A ) )  /\  ( ~P A  X.  ~P ( A  X.  A ) )  e. 
_V )  ->  O  e.  _V )
2314, 21, 22sylancr 663 . . 3  |-  ( A  e.  V  ->  O  e.  _V )
24 simpr 461 . . . . . . . 8  |-  ( ( A  e.  V  /\  u  e.  A )  ->  u  e.  A )
2524snssd 4030 . . . . . . 7  |-  ( ( A  e.  V  /\  u  e.  A )  ->  { u }  C_  A )
26 0ss 3678 . . . . . . . 8  |-  (/)  C_  ( { u }  X.  { u } )
2726a1i 11 . . . . . . 7  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
(/)  C_  ( { u }  X.  { u }
) )
28 rel0 4976 . . . . . . . 8  |-  Rel  (/)
29 noel 3653 . . . . . . . . . 10  |-  -.  <. u ,  u >.  e.  (/)
30 df-br 4305 . . . . . . . . . 10  |-  ( u
(/) u  <->  <. u ,  u >.  e.  (/) )
3129, 30mtbir 299 . . . . . . . . 9  |-  -.  u (/) u
32 wesn 4922 . . . . . . . . 9  |-  ( Rel  (/)  ->  ( (/)  We  {
u }  <->  -.  u (/) u ) )
3331, 32mpbiri 233 . . . . . . . 8  |-  ( Rel  (/)  ->  (/)  We  { u } )
3428, 33mp1i 12 . . . . . . 7  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
(/)  We  { u } )
35 snex 4545 . . . . . . . 8  |-  { u }  e.  _V
36 0ex 4434 . . . . . . . 8  |-  (/)  e.  _V
37 simpl 457 . . . . . . . . . 10  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  x  =  {
u } )
3837sseq1d 3395 . . . . . . . . 9  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( x  C_  A 
<->  { u }  C_  A ) )
39 simpr 461 . . . . . . . . . 10  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  r  =  (/) )
4037, 37xpeq12d 4877 . . . . . . . . . 10  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( x  X.  x )  =  ( { u }  X.  { u } ) )
4139, 40sseq12d 3397 . . . . . . . . 9  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( r  C_  ( x  X.  x
)  <->  (/)  C_  ( {
u }  X.  {
u } ) ) )
42 weeq2 4721 . . . . . . . . . 10  |-  ( x  =  { u }  ->  ( r  We  x  <->  r  We  { u }
) )
43 weeq1 4720 . . . . . . . . . 10  |-  ( r  =  (/)  ->  ( r  We  { u }  <->  (/)  We 
{ u } ) )
4442, 43sylan9bb 699 . . . . . . . . 9  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( r  We  x  <->  (/)  We  { u } ) )
4538, 41, 443anbi123d 1289 . . . . . . . 8  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x )  <->  ( {
u }  C_  A  /\  (/)  C_  ( {
u }  X.  {
u } )  /\  (/) 
We  { u }
) ) )
4635, 36, 45opelopaba 4617 . . . . . . 7  |-  ( <. { u } ,  (/)
>.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) }  <->  ( {
u }  C_  A  /\  (/)  C_  ( {
u }  X.  {
u } )  /\  (/) 
We  { u }
) )
4725, 27, 34, 46syl3anbrc 1172 . . . . . 6  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
<. { u } ,  (/)
>.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) } )
4847, 12syl6eleqr 2534 . . . . 5  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
<. { u } ,  (/)
>.  e.  O )
4948ex 434 . . . 4  |-  ( A  e.  V  ->  (
u  e.  A  ->  <. { u } ,  (/)
>.  e.  O ) )
50 eqid 2443 . . . . . . 7  |-  (/)  =  (/)
51 snex 4545 . . . . . . . 8  |-  { v }  e.  _V
5251, 36opth2 4582 . . . . . . 7  |-  ( <. { u } ,  (/)
>.  =  <. { v } ,  (/) >.  <->  ( {
u }  =  {
v }  /\  (/)  =  (/) ) )
5350, 52mpbiran2 910 . . . . . 6  |-  ( <. { u } ,  (/)
>.  =  <. { v } ,  (/) >.  <->  { u }  =  { v } )
54 vex 2987 . . . . . . 7  |-  u  e. 
_V
55 sneqbg 4055 . . . . . . 7  |-  ( u  e.  _V  ->  ( { u }  =  { v }  <->  u  =  v ) )
5654, 55ax-mp 5 . . . . . 6  |-  ( { u }  =  {
v }  <->  u  =  v )
5753, 56bitri 249 . . . . 5  |-  ( <. { u } ,  (/)
>.  =  <. { v } ,  (/) >.  <->  u  =  v )
5857a1ii 27 . . . 4  |-  ( A  e.  V  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( <. { u } ,  (/) >.  =  <. { v } ,  (/) >.  <->  u  =  v
) ) )
5949, 58dom2d 7362 . . 3  |-  ( A  e.  V  ->  ( O  e.  _V  ->  A  ~<_  O ) )
6023, 59mpd 15 . 2  |-  ( A  e.  V  ->  A  ~<_  O )
61 eqid 2443 . . . . . . 7  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) }  =  { <. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) }
6261fpwwe2cbv 8809 . . . . . 6  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) }  =  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  [. ( `' r " {
y } )  /  w ]. ( w f ( r  i^i  (
w  X.  w ) ) )  =  y ) ) }
63 eqid 2443 . . . . . 6  |-  U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) }  =  U. dom  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) }
64 eqid 2443 . . . . . 6  |-  ( `' ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) " { ( U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) } f ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) ) } )  =  ( `' ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) " { ( U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) } f ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) ) } )
6512, 62, 63, 64canthwelem 8829 . . . . 5  |-  ( A  e.  V  ->  -.  f : O -1-1-> A )
66 f1of1 5652 . . . . 5  |-  ( f : O -1-1-onto-> A  ->  f : O -1-1-> A )
6765, 66nsyl 121 . . . 4  |-  ( A  e.  V  ->  -.  f : O -1-1-onto-> A )
6867nexdv 1818 . . 3  |-  ( A  e.  V  ->  -.  E. f  f : O -1-1-onto-> A
)
69 ensym 7370 . . . 4  |-  ( A 
~~  O  ->  O  ~~  A )
70 bren 7331 . . . 4  |-  ( O 
~~  A  <->  E. f 
f : O -1-1-onto-> A )
7169, 70sylib 196 . . 3  |-  ( A 
~~  O  ->  E. f 
f : O -1-1-onto-> A )
7268, 71nsyl 121 . 2  |-  ( A  e.  V  ->  -.  A  ~~  O )
73 brsdom 7344 . 2  |-  ( A 
~<  O  <->  ( A  ~<_  O  /\  -.  A  ~~  O ) )
7460, 72, 73sylanbrc 664 1  |-  ( A  e.  V  ->  A  ~<  O )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2727   _Vcvv 2984   [.wsbc 3198    i^i cin 3339    C_ wss 3340   (/)c0 3649   ~Pcpw 3872   {csn 3889   <.cop 3895   U.cuni 4103   class class class wbr 4304   {copab 4361    We wwe 4690    X. cxp 4850   `'ccnv 4851   dom cdm 4852   "cima 4855   Rel wrel 4857   -1-1->wf1 5427   -1-1-onto->wf1o 5429   ` cfv 5430  (class class class)co 6103    ~~ cen 7319    ~<_ cdom 7320    ~< csdm 7321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-recs 6844  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-oi 7736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator