MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Unicode version

Theorem canthp1 9032
Description: A slightly stronger form of Cantor's theorem: For  1  <  n,  n  +  1  <  2 ^ n. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1  |-  ( 1o 
~<  A  ->  ( A  +c  1o )  ~<  ~P A )

Proof of Theorem canthp1
Dummy variables  f 
a  g  r  s  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 7718 . . . 4  |-  1o  ~<  2o
2 sdomdom 7543 . . . 4  |-  ( 1o 
~<  2o  ->  1o  ~<_  2o )
3 cdadom2 8567 . . . 4  |-  ( 1o  ~<_  2o  ->  ( A  +c  1o )  ~<_  ( A  +c  2o ) )
41, 2, 3mp2b 10 . . 3  |-  ( A  +c  1o )  ~<_  ( A  +c  2o )
5 canthp1lem1 9030 . . 3  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ~P A )
6 domtr 7568 . . 3  |-  ( ( ( A  +c  1o )  ~<_  ( A  +c  2o )  /\  ( A  +c  2o )  ~<_  ~P A )  ->  ( A  +c  1o )  ~<_  ~P A )
74, 5, 6sylancr 663 . 2  |-  ( 1o 
~<  A  ->  ( A  +c  1o )  ~<_  ~P A )
8 fal 1386 . . 3  |-  -. F.
9 ensym 7564 . . . . 5  |-  ( ( A  +c  1o ) 
~~  ~P A  ->  ~P A  ~~  ( A  +c  1o ) )
10 bren 7525 . . . . 5  |-  ( ~P A  ~~  ( A  +c  1o )  <->  E. f 
f : ~P A -1-1-onto-> ( A  +c  1o ) )
119, 10sylib 196 . . . 4  |-  ( ( A  +c  1o ) 
~~  ~P A  ->  E. f 
f : ~P A -1-1-onto-> ( A  +c  1o ) )
12 f1of 5816 . . . . . . . . . 10  |-  ( f : ~P A -1-1-onto-> ( A  +c  1o )  -> 
f : ~P A --> ( A  +c  1o ) )
13 relsdom 7523 . . . . . . . . . . . 12  |-  Rel  ~<
1413brrelex2i 5041 . . . . . . . . . . 11  |-  ( 1o 
~<  A  ->  A  e. 
_V )
15 pwidg 4023 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  A  e.  ~P A )
1614, 15syl 16 . . . . . . . . . 10  |-  ( 1o 
~<  A  ->  A  e. 
~P A )
17 ffvelrn 6019 . . . . . . . . . 10  |-  ( ( f : ~P A --> ( A  +c  1o )  /\  A  e.  ~P A )  ->  (
f `  A )  e.  ( A  +c  1o ) )
1812, 16, 17syl2anr 478 . . . . . . . . 9  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  ( f `  A )  e.  ( A  +c  1o ) )
19 cda1dif 8556 . . . . . . . . 9  |-  ( ( f `  A )  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { ( f `
 A ) } )  ~~  A )
2018, 19syl 16 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  ( ( A  +c  1o )  \  { ( f `  A ) } ) 
~~  A )
21 bren 7525 . . . . . . . 8  |-  ( ( ( A  +c  1o )  \  { ( f `
 A ) } )  ~~  A  <->  E. g 
g : ( ( A  +c  1o ) 
\  { ( f `
 A ) } ) -1-1-onto-> A )
2220, 21sylib 196 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  E. g  g : ( ( A  +c  1o )  \  { ( f `  A ) } ) -1-1-onto-> A )
23 simpll 753 . . . . . . . . 9  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  1o  ~<  A )
24 simplr 754 . . . . . . . . 9  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  f : ~P A -1-1-onto-> ( A  +c  1o ) )
25 simpr 461 . . . . . . . . 9  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  g : ( ( A  +c  1o )  \  { ( f `  A ) } ) -1-1-onto-> A )
26 eqeq1 2471 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w  =  A  <->  x  =  A ) )
27 id 22 . . . . . . . . . . . 12  |-  ( w  =  x  ->  w  =  x )
2826, 27ifbieq2d 3964 . . . . . . . . . . 11  |-  ( w  =  x  ->  if ( w  =  A ,  (/) ,  w )  =  if ( x  =  A ,  (/) ,  x ) )
2928cbvmptv 4538 . . . . . . . . . 10  |-  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) )  =  ( x  e.  ~P A  |->  if ( x  =  A ,  (/) ,  x ) )
3029coeq2i 5163 . . . . . . . . 9  |-  ( ( g  o.  f )  o.  ( w  e. 
~P A  |->  if ( w  =  A ,  (/)
,  w ) ) )  =  ( ( g  o.  f )  o.  ( x  e. 
~P A  |->  if ( x  =  A ,  (/)
,  x ) ) )
31 eqid 2467 . . . . . . . . . 10  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' s " {
z } ) )  =  z ) ) }  =  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' s " {
z } ) )  =  z ) ) }
3231fpwwecbv 9022 . . . . . . . . 9  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' s " {
z } ) )  =  z ) ) }  =  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' r " {
y } ) )  =  y ) ) }
33 eqid 2467 . . . . . . . . 9  |-  U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( ( ( g  o.  f )  o.  (
w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w
) ) ) `  ( `' s " {
z } ) )  =  z ) ) }  =  U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( ( ( g  o.  f )  o.  (
w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w
) ) ) `  ( `' s " {
z } ) )  =  z ) ) }
3423, 24, 25, 30, 32, 33canthp1lem2 9031 . . . . . . . 8  |-  -.  (
( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )
3534pm2.21i 131 . . . . . . 7  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  -> F.  )
3622, 35exlimddv 1702 . . . . . 6  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  -> F.  )
3736ex 434 . . . . 5  |-  ( 1o 
~<  A  ->  ( f : ~P A -1-1-onto-> ( A  +c  1o )  -> F.  ) )
3837exlimdv 1700 . . . 4  |-  ( 1o 
~<  A  ->  ( E. f  f : ~P A
-1-1-onto-> ( A  +c  1o )  -> F.  ) )
3911, 38syl5 32 . . 3  |-  ( 1o 
~<  A  ->  ( ( A  +c  1o ) 
~~  ~P A  -> F.  ) )
408, 39mtoi 178 . 2  |-  ( 1o 
~<  A  ->  -.  ( A  +c  1o )  ~~  ~P A )
41 brsdom 7538 . 2  |-  ( ( A  +c  1o ) 
~<  ~P A  <->  ( ( A  +c  1o )  ~<_  ~P A  /\  -.  ( A  +c  1o )  ~~  ~P A ) )
427, 40, 41sylanbrc 664 1  |-  ( 1o 
~<  A  ->  ( A  +c  1o )  ~<  ~P A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379   F. wfal 1384   E.wex 1596    e. wcel 1767   A.wral 2814   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   ifcif 3939   ~Pcpw 4010   {csn 4027   U.cuni 4245   class class class wbr 4447   {copab 4504    |-> cmpt 4505    We wwe 4837    X. cxp 4997   `'ccnv 4998   dom cdm 4999   "cima 5002    o. ccom 5003   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   1oc1o 7123   2oc2o 7124    ~~ cen 7513    ~<_ cdom 7514    ~< csdm 7515    +c ccda 8547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-oi 7935  df-card 8320  df-cda 8548
This theorem is referenced by:  finngch  9033  gchcda1  9034
  Copyright terms: Public domain W3C validator