MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnumlem Structured version   Visualization version   Unicode version

Theorem canthnumlem 9091
Description: Lemma for canthnum 9092. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
canth4.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
canth4.2  |-  B  = 
U. dom  W
canth4.3  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
Assertion
Ref Expression
canthnumlem  |-  ( A  e.  V  ->  -.  F : ( ~P A  i^i  dom  card ) -1-1-> A )
Distinct variable groups:    x, r,
y, A    B, r, x, y    F, r, x, y    V, r, x, y   
y, C    W, r, x, y
Allowed substitution hints:    C( x, r)

Proof of Theorem canthnumlem
StepHypRef Expression
1 f1f 5792 . . . . 5  |-  ( F : ( ~P A  i^i  dom  card ) -1-1-> A  ->  F : ( ~P A  i^i  dom  card ) --> A )
2 ssid 3437 . . . . . 6  |-  ( ~P A  i^i  dom  card )  C_  ( ~P A  i^i  dom  card )
3 canth4.1 . . . . . . 7  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
4 canth4.2 . . . . . . 7  |-  B  = 
U. dom  W
5 canth4.3 . . . . . . 7  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
63, 4, 5canth4 9090 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) --> A  /\  ( ~P A  i^i  dom  card )  C_  ( ~P A  i^i  dom  card ) )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
72, 6mp3an3 1379 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) --> A )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
81, 7sylan2 482 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
98simp3d 1044 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( F `  B )  =  ( F `  C ) )
10 simpr 468 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  F : ( ~P A  i^i  dom  card ) -1-1-> A )
118simp1d 1042 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  C_  A
)
12 elpw2g 4564 . . . . . . 7  |-  ( A  e.  V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
1312adantr 472 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B  e. 
~P A  <->  B  C_  A
) )
1411, 13mpbird 240 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  ~P A )
15 eqid 2471 . . . . . . . . . . . . 13  |-  B  =  B
16 eqid 2471 . . . . . . . . . . . . 13  |-  ( W `
 B )  =  ( W `  B
)
1715, 16pm3.2i 462 . . . . . . . . . . . 12  |-  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) )
18 elex 3040 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  _V )
1918adantr 472 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  A  e.  _V )
2010, 1syl 17 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  F : ( ~P A  i^i  dom  card ) --> A )
2120ffvelrnda 6037 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A
)
223, 19, 21, 4fpwwe 9089 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( B W ( W `  B )  /\  ( F `  B )  e.  B )  <->  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) ) ) )
2317, 22mpbiri 241 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B W ( W `  B
)  /\  ( F `  B )  e.  B
) )
2423simpld 466 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B W ( W `  B ) )
253, 19fpwwelem 9088 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B W ( W `  B
)  <->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) ) ) )
2624, 25mpbid 215 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) ) )
2726simprd 470 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) )
2827simpld 466 . . . . . . 7  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( W `  B )  We  B
)
29 fvex 5889 . . . . . . . 8  |-  ( W `
 B )  e. 
_V
30 weeq1 4827 . . . . . . . 8  |-  ( r  =  ( W `  B )  ->  (
r  We  B  <->  ( W `  B )  We  B
) )
3129, 30spcev 3127 . . . . . . 7  |-  ( ( W `  B )  We  B  ->  E. r 
r  We  B )
3228, 31syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  E. r  r  We  B )
33 ween 8484 . . . . . 6  |-  ( B  e.  dom  card  <->  E. r 
r  We  B )
3432, 33sylibr 217 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  dom  card )
3514, 34elind 3609 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  ( ~P A  i^i  dom  card ) )
368simp2d 1043 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C.  B
)
3736pssssd 3516 . . . . . . 7  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C_  B
)
3837, 11sstrd 3428 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C_  A
)
39 elpw2g 4564 . . . . . . 7  |-  ( A  e.  V  ->  ( C  e.  ~P A  <->  C 
C_  A ) )
4039adantr 472 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( C  e. 
~P A  <->  C  C_  A
) )
4138, 40mpbird 240 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  ~P A )
42 ssnum 8488 . . . . . 6  |-  ( ( B  e.  dom  card  /\  C  C_  B )  ->  C  e.  dom  card )
4334, 37, 42syl2anc 673 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  dom  card )
4441, 43elind 3609 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  ( ~P A  i^i  dom  card ) )
45 f1fveq 6181 . . . 4  |-  ( ( F : ( ~P A  i^i  dom  card ) -1-1-> A  /\  ( B  e.  ( ~P A  i^i  dom  card )  /\  C  e.  ( ~P A  i^i  dom  card ) ) )  ->  ( ( F `  B )  =  ( F `  C )  <->  B  =  C ) )
4610, 35, 44, 45syl12anc 1290 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( F `
 B )  =  ( F `  C
)  <->  B  =  C
) )
479, 46mpbid 215 . 2  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  =  C )
4836pssned 3517 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  =/=  B
)
4948necomd 2698 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  =/=  C
)
5049neneqd 2648 . 2  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  -.  B  =  C )
5147, 50pm2.65da 586 1  |-  ( A  e.  V  ->  -.  F : ( ~P A  i^i  dom  card ) -1-1-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   _Vcvv 3031    i^i cin 3389    C_ wss 3390    C. wpss 3391   ~Pcpw 3942   {csn 3959   U.cuni 4190   class class class wbr 4395   {copab 4453    We wwe 4797    X. cxp 4837   `'ccnv 4838   dom cdm 4839   "cima 4842   -->wf 5585   -1-1->wf1 5586   ` cfv 5589   cardccrd 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-1st 6812  df-wrecs 7046  df-recs 7108  df-er 7381  df-en 7588  df-dom 7589  df-oi 8043  df-card 8391
This theorem is referenced by:  canthnum  9092
  Copyright terms: Public domain W3C validator