MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnumlem Structured version   Unicode version

Theorem canthnumlem 9056
Description: Lemma for canthnum 9057. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
canth4.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
canth4.2  |-  B  = 
U. dom  W
canth4.3  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
Assertion
Ref Expression
canthnumlem  |-  ( A  e.  V  ->  -.  F : ( ~P A  i^i  dom  card ) -1-1-> A )
Distinct variable groups:    x, r,
y, A    B, r, x, y    F, r, x, y    V, r, x, y   
y, C    W, r, x, y
Allowed substitution hints:    C( x, r)

Proof of Theorem canthnumlem
StepHypRef Expression
1 f1f 5764 . . . . 5  |-  ( F : ( ~P A  i^i  dom  card ) -1-1-> A  ->  F : ( ~P A  i^i  dom  card ) --> A )
2 ssid 3461 . . . . . 6  |-  ( ~P A  i^i  dom  card )  C_  ( ~P A  i^i  dom  card )
3 canth4.1 . . . . . . 7  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
4 canth4.2 . . . . . . 7  |-  B  = 
U. dom  W
5 canth4.3 . . . . . . 7  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
63, 4, 5canth4 9055 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) --> A  /\  ( ~P A  i^i  dom  card )  C_  ( ~P A  i^i  dom  card ) )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
72, 6mp3an3 1315 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) --> A )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
81, 7sylan2 472 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B
)  =  ( F `
 C ) ) )
98simp3d 1011 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( F `  B )  =  ( F `  C ) )
10 simpr 459 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  F : ( ~P A  i^i  dom  card ) -1-1-> A )
118simp1d 1009 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  C_  A
)
12 elpw2g 4557 . . . . . . 7  |-  ( A  e.  V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
1312adantr 463 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B  e. 
~P A  <->  B  C_  A
) )
1411, 13mpbird 232 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  ~P A )
15 eqid 2402 . . . . . . . . . . . . 13  |-  B  =  B
16 eqid 2402 . . . . . . . . . . . . 13  |-  ( W `
 B )  =  ( W `  B
)
1715, 16pm3.2i 453 . . . . . . . . . . . 12  |-  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) )
18 elex 3068 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  _V )
1918adantr 463 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  A  e.  _V )
2010, 1syl 17 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  F : ( ~P A  i^i  dom  card ) --> A )
2120ffvelrnda 6009 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A
)
223, 19, 21, 4fpwwe 9054 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( B W ( W `  B )  /\  ( F `  B )  e.  B )  <->  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) ) ) )
2317, 22mpbiri 233 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B W ( W `  B
)  /\  ( F `  B )  e.  B
) )
2423simpld 457 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B W ( W `  B ) )
253, 19fpwwelem 9053 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( B W ( W `  B
)  <->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) ) ) )
2624, 25mpbid 210 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) ) )
2726simprd 461 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) )
2827simpld 457 . . . . . . 7  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( W `  B )  We  B
)
29 fvex 5859 . . . . . . . 8  |-  ( W `
 B )  e. 
_V
30 weeq1 4811 . . . . . . . 8  |-  ( r  =  ( W `  B )  ->  (
r  We  B  <->  ( W `  B )  We  B
) )
3129, 30spcev 3151 . . . . . . 7  |-  ( ( W `  B )  We  B  ->  E. r 
r  We  B )
3228, 31syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  E. r  r  We  B )
33 ween 8448 . . . . . 6  |-  ( B  e.  dom  card  <->  E. r 
r  We  B )
3432, 33sylibr 212 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  dom  card )
3514, 34elind 3627 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  e.  ( ~P A  i^i  dom  card ) )
368simp2d 1010 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C.  B
)
3736pssssd 3540 . . . . . . 7  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C_  B
)
3837, 11sstrd 3452 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  C_  A
)
39 elpw2g 4557 . . . . . . 7  |-  ( A  e.  V  ->  ( C  e.  ~P A  <->  C 
C_  A ) )
4039adantr 463 . . . . . 6  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( C  e. 
~P A  <->  C  C_  A
) )
4138, 40mpbird 232 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  ~P A )
42 ssnum 8452 . . . . . 6  |-  ( ( B  e.  dom  card  /\  C  C_  B )  ->  C  e.  dom  card )
4334, 37, 42syl2anc 659 . . . . 5  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  dom  card )
4441, 43elind 3627 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  e.  ( ~P A  i^i  dom  card ) )
45 f1fveq 6151 . . . 4  |-  ( ( F : ( ~P A  i^i  dom  card ) -1-1-> A  /\  ( B  e.  ( ~P A  i^i  dom  card )  /\  C  e.  ( ~P A  i^i  dom  card ) ) )  ->  ( ( F `  B )  =  ( F `  C )  <->  B  =  C ) )
4610, 35, 44, 45syl12anc 1228 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  ( ( F `
 B )  =  ( F `  C
)  <->  B  =  C
) )
479, 46mpbid 210 . 2  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  =  C )
4836pssned 3541 . . . 4  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  C  =/=  B
)
4948necomd 2674 . . 3  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  B  =/=  C
)
5049neneqd 2605 . 2  |-  ( ( A  e.  V  /\  F : ( ~P A  i^i  dom  card ) -1-1-> A )  ->  -.  B  =  C )
5147, 50pm2.65da 574 1  |-  ( A  e.  V  ->  -.  F : ( ~P A  i^i  dom  card ) -1-1-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   A.wral 2754   _Vcvv 3059    i^i cin 3413    C_ wss 3414    C. wpss 3415   ~Pcpw 3955   {csn 3972   U.cuni 4191   class class class wbr 4395   {copab 4452    We wwe 4781    X. cxp 4821   `'ccnv 4822   dom cdm 4823   "cima 4826   -->wf 5565   -1-1->wf1 5566   ` cfv 5569   cardccrd 8348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-1st 6784  df-wrecs 7013  df-recs 7075  df-er 7348  df-en 7555  df-dom 7556  df-oi 7969  df-card 8352
This theorem is referenced by:  canthnum  9057
  Copyright terms: Public domain W3C validator