MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnum Structured version   Unicode version

Theorem canthnum 8821
Description: The set of well-orderable subsets of a set  A strictly dominates  A. A stronger form of canth2 7469. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
canthnum  |-  ( A  e.  V  ->  A  ~<  ( ~P A  i^i  dom 
card ) )

Proof of Theorem canthnum
Dummy variables  f 
a  r  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4481 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 inex1g 4440 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
3 infpwfidom 8203 . . . 4  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
41, 2, 33syl 20 . . 3  |-  ( A  e.  V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
5 inex1g 4440 . . . . 5  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  dom  card )  e.  _V )
61, 5syl 16 . . . 4  |-  ( A  e.  V  ->  ( ~P A  i^i  dom  card )  e.  _V )
7 finnum 8123 . . . . . 6  |-  ( x  e.  Fin  ->  x  e.  dom  card )
87ssriv 3365 . . . . 5  |-  Fin  C_  dom  card
9 sslin 3581 . . . . 5  |-  ( Fin  C_  dom  card  ->  ( ~P A  i^i  Fin )  C_  ( ~P A  i^i  dom 
card ) )
108, 9ax-mp 5 . . . 4  |-  ( ~P A  i^i  Fin )  C_  ( ~P A  i^i  dom 
card )
11 ssdomg 7360 . . . 4  |-  ( ( ~P A  i^i  dom  card )  e.  _V  ->  ( ( ~P A  i^i  Fin )  C_  ( ~P A  i^i  dom  card )  -> 
( ~P A  i^i  Fin )  ~<_  ( ~P A  i^i  dom  card ) ) )
126, 10, 11mpisyl 18 . . 3  |-  ( A  e.  V  ->  ( ~P A  i^i  Fin )  ~<_  ( ~P A  i^i  dom  card ) )
13 domtr 7367 . . 3  |-  ( ( A  ~<_  ( ~P A  i^i  Fin )  /\  ( ~P A  i^i  Fin )  ~<_  ( ~P A  i^i  dom  card ) )  ->  A  ~<_  ( ~P A  i^i  dom  card ) )
144, 12, 13syl2anc 661 . 2  |-  ( A  e.  V  ->  A  ~<_  ( ~P A  i^i  dom  card ) )
15 eqid 2443 . . . . . . 7  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }  =  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }
1615fpwwecbv 8816 . . . . . 6  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }  =  { <. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( f `  ( `' s " { z } ) )  =  z ) ) }
17 eqid 2443 . . . . . 6  |-  U. dom  {
<. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }  =  U. dom  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }
18 eqid 2443 . . . . . 6  |-  ( `' ( { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) } `  U. dom  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " {
y } ) )  =  y ) ) } ) " {
( f `  U. dom  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " {
y } ) )  =  y ) ) } ) } )  =  ( `' ( { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " {
y } ) )  =  y ) ) } `  U. dom  {
<. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) } ) " { ( f `  U. dom  {
<. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) } ) } )
1916, 17, 18canthnumlem 8820 . . . . 5  |-  ( A  e.  V  ->  -.  f : ( ~P A  i^i  dom  card ) -1-1-> A )
20 f1of1 5645 . . . . 5  |-  ( f : ( ~P A  i^i  dom  card ) -1-1-onto-> A  ->  f :
( ~P A  i^i  dom 
card ) -1-1-> A )
2119, 20nsyl 121 . . . 4  |-  ( A  e.  V  ->  -.  f : ( ~P A  i^i  dom  card ) -1-1-onto-> A )
2221nexdv 1818 . . 3  |-  ( A  e.  V  ->  -.  E. f  f : ( ~P A  i^i  dom  card ) -1-1-onto-> A )
23 ensym 7363 . . . 4  |-  ( A 
~~  ( ~P A  i^i  dom  card )  ->  ( ~P A  i^i  dom  card )  ~~  A )
24 bren 7324 . . . 4  |-  ( ( ~P A  i^i  dom  card )  ~~  A  <->  E. f 
f : ( ~P A  i^i  dom  card )
-1-1-onto-> A )
2523, 24sylib 196 . . 3  |-  ( A 
~~  ( ~P A  i^i  dom  card )  ->  E. f 
f : ( ~P A  i^i  dom  card )
-1-1-onto-> A )
2622, 25nsyl 121 . 2  |-  ( A  e.  V  ->  -.  A  ~~  ( ~P A  i^i  dom  card ) )
27 brsdom 7337 . 2  |-  ( A 
~<  ( ~P A  i^i  dom 
card )  <->  ( A  ~<_  ( ~P A  i^i  dom  card )  /\  -.  A  ~~  ( ~P A  i^i  dom 
card ) ) )
2814, 26, 27sylanbrc 664 1  |-  ( A  e.  V  ->  A  ~<  ( ~P A  i^i  dom 
card ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2720   _Vcvv 2977    i^i cin 3332    C_ wss 3333   ~Pcpw 3865   {csn 3882   U.cuni 4096   class class class wbr 4297   {copab 4354    We wwe 4683    X. cxp 4843   `'ccnv 4844   dom cdm 4845   "cima 4848   -1-1->wf1 5420   -1-1-onto->wf1o 5422   ` cfv 5423    ~~ cen 7312    ~<_ cdom 7313    ~< csdm 7314   Fincfn 7315   cardccrd 8110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-om 6482  df-1st 6582  df-recs 6837  df-1o 6925  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-oi 7729  df-card 8114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator