MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth4 Structured version   Unicode version

Theorem canth4 9042
Description: An "effective" form of Cantor's theorem canth 6255. For any function  F from the powerset of  A to  A, there are two definable sets  B and  C which witness non-injectivity of  F. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canth4.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
canth4.2  |-  B  = 
U. dom  W
canth4.3  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
Assertion
Ref Expression
canth4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B )  =  ( F `  C ) ) )
Distinct variable groups:    x, r,
y, A    B, r, x, y    D, r, x, y    F, r, x, y    V, r, x, y    y, C    W, r, x, y
Allowed substitution hints:    C( x, r)

Proof of Theorem canth4
StepHypRef Expression
1 eqid 2457 . . . . . . . 8  |-  B  =  B
2 eqid 2457 . . . . . . . 8  |-  ( W `
 B )  =  ( W `  B
)
31, 2pm3.2i 455 . . . . . . 7  |-  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) )
4 canth4.1 . . . . . . . 8  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
5 elex 3118 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  _V )
653ad2ant1 1017 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  A  e.  _V )
7 simpl2 1000 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  F : D --> A )
8 simp3 998 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ~P A  i^i  dom 
card )  C_  D
)
98sselda 3499 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  x  e.  D )
107, 9ffvelrnd 6033 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A )
11 canth4.2 . . . . . . . 8  |-  B  = 
U. dom  W
124, 6, 10, 11fpwwe 9041 . . . . . . 7  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ( B W ( W `  B
)  /\  ( F `  B )  e.  B
)  <->  ( B  =  B  /\  ( W `
 B )  =  ( W `  B
) ) ) )
133, 12mpbiri 233 . . . . . 6  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B W ( W `  B )  /\  ( F `  B )  e.  B
) )
1413simpld 459 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  B W ( W `
 B ) )
154, 6fpwwelem 9040 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B W ( W `  B )  <-> 
( ( B  C_  A  /\  ( W `  B )  C_  ( B  X.  B ) )  /\  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) ) ) )
1614, 15mpbid 210 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ( B  C_  A  /\  ( W `  B )  C_  ( B  X.  B ) )  /\  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) ) )
1716simpld 459 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B  C_  A  /\  ( W `  B
)  C_  ( B  X.  B ) ) )
1817simpld 459 . 2  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  B  C_  A )
19 canth4.3 . . . . 5  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
20 cnvimass 5367 . . . . 5  |-  ( `' ( W `  B
) " { ( F `  B ) } )  C_  dom  ( W `  B )
2119, 20eqsstri 3529 . . . 4  |-  C  C_  dom  ( W `  B
)
2217simprd 463 . . . . . 6  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( W `  B
)  C_  ( B  X.  B ) )
23 dmss 5212 . . . . . 6  |-  ( ( W `  B ) 
C_  ( B  X.  B )  ->  dom  ( W `  B ) 
C_  dom  ( B  X.  B ) )
2422, 23syl 16 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  dom  ( W `  B )  C_  dom  ( B  X.  B
) )
25 dmxpid 5232 . . . . 5  |-  dom  ( B  X.  B )  =  B
2624, 25syl6sseq 3545 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  dom  ( W `  B )  C_  B
)
2721, 26syl5ss 3510 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  C  C_  B )
2813simprd 463 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( F `  B
)  e.  B )
2916simprd 463 . . . . . . 7  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ( W `  B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) )
3029simpld 459 . . . . . 6  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( W `  B
)  We  B )
31 weso 4879 . . . . . 6  |-  ( ( W `  B )  We  B  ->  ( W `  B )  Or  B )
3230, 31syl 16 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( W `  B
)  Or  B )
33 sonr 4830 . . . . 5  |-  ( ( ( W `  B
)  Or  B  /\  ( F `  B )  e.  B )  ->  -.  ( F `  B
) ( W `  B ) ( F `
 B ) )
3432, 28, 33syl2anc 661 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  -.  ( F `  B ) ( W `
 B ) ( F `  B ) )
3519eleq2i 2535 . . . . 5  |-  ( ( F `  B )  e.  C  <->  ( F `  B )  e.  ( `' ( W `  B ) " {
( F `  B
) } ) )
36 fvex 5882 . . . . . 6  |-  ( F `
 B )  e. 
_V
3736eliniseg 5376 . . . . . 6  |-  ( ( F `  B )  e.  _V  ->  (
( F `  B
)  e.  ( `' ( W `  B
) " { ( F `  B ) } )  <->  ( F `  B ) ( W `
 B ) ( F `  B ) ) )
3836, 37ax-mp 5 . . . . 5  |-  ( ( F `  B )  e.  ( `' ( W `  B )
" { ( F `
 B ) } )  <->  ( F `  B ) ( W `
 B ) ( F `  B ) )
3935, 38bitri 249 . . . 4  |-  ( ( F `  B )  e.  C  <->  ( F `  B ) ( W `
 B ) ( F `  B ) )
4034, 39sylnibr 305 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  -.  ( F `  B )  e.  C
)
4127, 28, 40ssnelpssd 3894 . 2  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  C  C.  B )
4229simprd 463 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y )
43 sneq 4042 . . . . . . . . 9  |-  ( y  =  ( F `  B )  ->  { y }  =  { ( F `  B ) } )
4443imaeq2d 5347 . . . . . . . 8  |-  ( y  =  ( F `  B )  ->  ( `' ( W `  B ) " {
y } )  =  ( `' ( W `
 B ) " { ( F `  B ) } ) )
4544, 19syl6eqr 2516 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  ( `' ( W `  B ) " {
y } )  =  C )
4645fveq2d 5876 . . . . . 6  |-  ( y  =  ( F `  B )  ->  ( F `  ( `' ( W `  B )
" { y } ) )  =  ( F `  C ) )
47 id 22 . . . . . 6  |-  ( y  =  ( F `  B )  ->  y  =  ( F `  B ) )
4846, 47eqeq12d 2479 . . . . 5  |-  ( y  =  ( F `  B )  ->  (
( F `  ( `' ( W `  B ) " {
y } ) )  =  y  <->  ( F `  C )  =  ( F `  B ) ) )
4948rspcv 3206 . . . 4  |-  ( ( F `  B )  e.  B  ->  ( A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y  ->  ( F `  C )  =  ( F `  B ) ) )
5028, 42, 49sylc 60 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( F `  C
)  =  ( F `
 B ) )
5150eqcomd 2465 . 2  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( F `  B
)  =  ( F `
 C ) )
5218, 41, 513jca 1176 1  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B )  =  ( F `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    i^i cin 3470    C_ wss 3471    C. wpss 3472   ~Pcpw 4015   {csn 4032   U.cuni 4251   class class class wbr 4456   {copab 4514    Or wor 4808    We wwe 4846    X. cxp 5006   `'ccnv 5007   dom cdm 5008   "cima 5011   -->wf 5590   ` cfv 5594   cardccrd 8333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-1st 6799  df-recs 7060  df-en 7536  df-oi 7953  df-card 8337
This theorem is referenced by:  canthnumlem  9043  canthp1lem2  9048
  Copyright terms: Public domain W3C validator