MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth4 Structured version   Visualization version   Unicode version

Theorem canth4 9090
Description: An "effective" form of Cantor's theorem canth 6267. For any function  F from the powerset of  A to  A, there are two definable sets  B and  C which witness non-injectivity of  F. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canth4.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
canth4.2  |-  B  = 
U. dom  W
canth4.3  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
Assertion
Ref Expression
canth4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B )  =  ( F `  C ) ) )
Distinct variable groups:    x, r,
y, A    B, r, x, y    D, r, x, y    F, r, x, y    V, r, x, y    y, C    W, r, x, y
Allowed substitution hints:    C( x, r)

Proof of Theorem canth4
StepHypRef Expression
1 eqid 2471 . . . . . . . 8  |-  B  =  B
2 eqid 2471 . . . . . . . 8  |-  ( W `
 B )  =  ( W `  B
)
31, 2pm3.2i 462 . . . . . . 7  |-  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) )
4 canth4.1 . . . . . . . 8  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
5 elex 3040 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  _V )
653ad2ant1 1051 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  A  e.  _V )
7 simpl2 1034 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  F : D --> A )
8 simp3 1032 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ~P A  i^i  dom 
card )  C_  D
)
98sselda 3418 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  x  e.  D )
107, 9ffvelrnd 6038 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A )
11 canth4.2 . . . . . . . 8  |-  B  = 
U. dom  W
124, 6, 10, 11fpwwe 9089 . . . . . . 7  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ( B W ( W `  B
)  /\  ( F `  B )  e.  B
)  <->  ( B  =  B  /\  ( W `
 B )  =  ( W `  B
) ) ) )
133, 12mpbiri 241 . . . . . 6  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B W ( W `  B )  /\  ( F `  B )  e.  B
) )
1413simpld 466 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  B W ( W `
 B ) )
154, 6fpwwelem 9088 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B W ( W `  B )  <-> 
( ( B  C_  A  /\  ( W `  B )  C_  ( B  X.  B ) )  /\  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) ) ) )
1614, 15mpbid 215 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ( B  C_  A  /\  ( W `  B )  C_  ( B  X.  B ) )  /\  ( ( W `
 B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `
 B ) " { y } ) )  =  y ) ) )
1716simpld 466 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B  C_  A  /\  ( W `  B
)  C_  ( B  X.  B ) ) )
1817simpld 466 . 2  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  B  C_  A )
19 canth4.3 . . . . 5  |-  C  =  ( `' ( W `
 B ) " { ( F `  B ) } )
20 cnvimass 5194 . . . . 5  |-  ( `' ( W `  B
) " { ( F `  B ) } )  C_  dom  ( W `  B )
2119, 20eqsstri 3448 . . . 4  |-  C  C_  dom  ( W `  B
)
2217simprd 470 . . . . . 6  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( W `  B
)  C_  ( B  X.  B ) )
23 dmss 5039 . . . . . 6  |-  ( ( W `  B ) 
C_  ( B  X.  B )  ->  dom  ( W `  B ) 
C_  dom  ( B  X.  B ) )
2422, 23syl 17 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  dom  ( W `  B )  C_  dom  ( B  X.  B
) )
25 dmxpid 5060 . . . . 5  |-  dom  ( B  X.  B )  =  B
2624, 25syl6sseq 3464 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  dom  ( W `  B )  C_  B
)
2721, 26syl5ss 3429 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  C  C_  B )
2813simprd 470 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( F `  B
)  e.  B )
2916simprd 470 . . . . . . 7  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( ( W `  B )  We  B  /\  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y ) )
3029simpld 466 . . . . . 6  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( W `  B
)  We  B )
31 weso 4830 . . . . . 6  |-  ( ( W `  B )  We  B  ->  ( W `  B )  Or  B )
3230, 31syl 17 . . . . 5  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( W `  B
)  Or  B )
33 sonr 4781 . . . . 5  |-  ( ( ( W `  B
)  Or  B  /\  ( F `  B )  e.  B )  ->  -.  ( F `  B
) ( W `  B ) ( F `
 B ) )
3432, 28, 33syl2anc 673 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  -.  ( F `  B ) ( W `
 B ) ( F `  B ) )
3519eleq2i 2541 . . . . 5  |-  ( ( F `  B )  e.  C  <->  ( F `  B )  e.  ( `' ( W `  B ) " {
( F `  B
) } ) )
36 fvex 5889 . . . . . 6  |-  ( F `
 B )  e. 
_V
3736eliniseg 5203 . . . . . 6  |-  ( ( F `  B )  e.  _V  ->  (
( F `  B
)  e.  ( `' ( W `  B
) " { ( F `  B ) } )  <->  ( F `  B ) ( W `
 B ) ( F `  B ) ) )
3836, 37ax-mp 5 . . . . 5  |-  ( ( F `  B )  e.  ( `' ( W `  B )
" { ( F `
 B ) } )  <->  ( F `  B ) ( W `
 B ) ( F `  B ) )
3935, 38bitri 257 . . . 4  |-  ( ( F `  B )  e.  C  <->  ( F `  B ) ( W `
 B ) ( F `  B ) )
4034, 39sylnibr 312 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  -.  ( F `  B )  e.  C
)
4127, 28, 40ssnelpssd 3531 . 2  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  C  C.  B )
4229simprd 470 . . . 4  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y )
43 sneq 3969 . . . . . . . . 9  |-  ( y  =  ( F `  B )  ->  { y }  =  { ( F `  B ) } )
4443imaeq2d 5174 . . . . . . . 8  |-  ( y  =  ( F `  B )  ->  ( `' ( W `  B ) " {
y } )  =  ( `' ( W `
 B ) " { ( F `  B ) } ) )
4544, 19syl6eqr 2523 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  ( `' ( W `  B ) " {
y } )  =  C )
4645fveq2d 5883 . . . . . 6  |-  ( y  =  ( F `  B )  ->  ( F `  ( `' ( W `  B )
" { y } ) )  =  ( F `  C ) )
47 id 22 . . . . . 6  |-  ( y  =  ( F `  B )  ->  y  =  ( F `  B ) )
4846, 47eqeq12d 2486 . . . . 5  |-  ( y  =  ( F `  B )  ->  (
( F `  ( `' ( W `  B ) " {
y } ) )  =  y  <->  ( F `  C )  =  ( F `  B ) ) )
4948rspcv 3132 . . . 4  |-  ( ( F `  B )  e.  B  ->  ( A. y  e.  B  ( F `  ( `' ( W `  B
) " { y } ) )  =  y  ->  ( F `  C )  =  ( F `  B ) ) )
5028, 42, 49sylc 61 . . 3  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( F `  C
)  =  ( F `
 B ) )
5150eqcomd 2477 . 2  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( F `  B
)  =  ( F `
 C ) )
5218, 41, 513jca 1210 1  |-  ( ( A  e.  V  /\  F : D --> A  /\  ( ~P A  i^i  dom  card )  C_  D )  ->  ( B  C_  A  /\  C  C.  B  /\  ( F `  B )  =  ( F `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    i^i cin 3389    C_ wss 3390    C. wpss 3391   ~Pcpw 3942   {csn 3959   U.cuni 4190   class class class wbr 4395   {copab 4453    Or wor 4759    We wwe 4797    X. cxp 4837   `'ccnv 4838   dom cdm 4839   "cima 4842   -->wf 5585   ` cfv 5589   cardccrd 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-1st 6812  df-wrecs 7046  df-recs 7108  df-en 7588  df-oi 8043  df-card 8391
This theorem is referenced by:  canthnumlem  9091  canthp1lem2  9096
  Copyright terms: Public domain W3C validator