MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  calemos Structured version   Unicode version

Theorem calemos 2420
Description: "Calemos", one of the syllogisms of Aristotelian logic. All  ph is  ps (PaM), no  ps is  ch (MeS), and  ch exist, therefore some  ch is not  ph (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemos.maj  |-  A. x
( ph  ->  ps )
calemos.min  |-  A. x
( ps  ->  -.  ch )
calemos.e  |-  E. x ch
Assertion
Ref Expression
calemos  |-  E. x
( ch  /\  -.  ph )

Proof of Theorem calemos
StepHypRef Expression
1 calemos.e . 2  |-  E. x ch
2 calemos.min . . . . . 6  |-  A. x
( ps  ->  -.  ch )
32spi 1808 . . . . 5  |-  ( ps 
->  -.  ch )
43con2i 120 . . . 4  |-  ( ch 
->  -.  ps )
5 calemos.maj . . . . 5  |-  A. x
( ph  ->  ps )
65spi 1808 . . . 4  |-  ( ph  ->  ps )
74, 6nsyl 121 . . 3  |-  ( ch 
->  -.  ph )
87ancli 551 . 2  |-  ( ch 
->  ( ch  /\  -.  ph ) )
91, 8eximii 1632 1  |-  E. x
( ch  /\  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369   A.wal 1372   E.wex 1591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-12 1798
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator