Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  calemes Structured version   Unicode version

Theorem calemes 2398
 Description: "Calemes", one of the syllogisms of Aristotelian logic. All is , and no is , therefore no is . (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemes.maj
calemes.min
Assertion
Ref Expression
calemes

Proof of Theorem calemes
StepHypRef Expression
1 calemes.min . . . . 5
21spi 1848 . . . 4
32con2i 120 . . 3
4 calemes.maj . . . 4
54spi 1848 . . 3
63, 5nsyl 121 . 2
76ax-gen 1603 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-12 1838 This theorem depends on definitions:  df-bi 185  df-ex 1598 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator