MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadtru Structured version   Unicode version

Theorem cadtru 1473
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadtru  |- cadd ( T.  , T.  ,  ph )

Proof of Theorem cadtru
StepHypRef Expression
1 tru 1402 . 2  |- T.
2 cad11 1470 . 2  |-  ( ( T.  /\ T.  )  -> cadd ( T.  , T.  ,  ph ) )
31, 1, 2mp2an 670 1  |- cadd ( T.  , T.  ,  ph )
Colors of variables: wff setvar class
Syntax hints:   T. wtru 1399  caddwcad 1449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-cad 1451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator