MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Structured version   Unicode version

Theorem c1liplem1 21448
Description: Lemma for c1lip1 21449. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a  |-  ( ph  ->  A  e.  RR )
c1liplem1.b  |-  ( ph  ->  B  e.  RR )
c1liplem1.le  |-  ( ph  ->  A  <_  B )
c1liplem1.f  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
c1liplem1.dv  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1liplem1.cn  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1liplem1.k  |-  K  =  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )
Assertion
Ref Expression
c1liplem1  |-  ( ph  ->  ( K  e.  RR  /\ 
A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) ) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    x, F, y
Allowed substitution hints:    K( x, y)

Proof of Theorem c1liplem1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3  |-  K  =  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )
2 imassrn 5175 . . . . . 6  |-  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  C_  ran  abs
3 absf 12817 . . . . . . 7  |-  abs : CC
--> RR
4 frn 5560 . . . . . . 7  |-  ( abs
: CC --> RR  ->  ran 
abs  C_  RR )
53, 4ax-mp 5 . . . . . 6  |-  ran  abs  C_  RR
62, 5sstri 3360 . . . . 5  |-  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  C_  RR
76a1i 11 . . . 4  |-  ( ph  ->  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR )
8 dvf 21362 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
9 ffun 5556 . . . . . . . 8  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
108, 9ax-mp 5 . . . . . . 7  |-  Fun  ( RR  _D  F )
1110a1i 11 . . . . . 6  |-  ( ph  ->  Fun  ( RR  _D  F ) )
12 c1liplem1.dv . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
13 cncff 20449 . . . . . . . 8  |-  ( ( ( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( ( RR 
_D  F )  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
14 fdm 5558 . . . . . . . 8  |-  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) : ( A [,] B
) --> RR  ->  dom  ( ( RR  _D  F )  |`  ( A [,] B ) )  =  ( A [,] B ) )
1512, 13, 143syl 20 . . . . . . 7  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A [,] B ) )  =  ( A [,] B ) )
16 ssdmres 5127 . . . . . . 7  |-  ( ( A [,] B ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( A [,] B
) )  =  ( A [,] B ) )
1715, 16sylibr 212 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  dom  ( RR 
_D  F ) )
18 c1liplem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
1918rexrd 9425 . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
20 c1liplem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
2120rexrd 9425 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
22 c1liplem1.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
23 lbicc2 11393 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
2419, 21, 22, 23syl3anc 1218 . . . . . 6  |-  ( ph  ->  A  e.  ( A [,] B ) )
25 funfvima2 5948 . . . . . . 7  |-  ( ( Fun  ( RR  _D  F )  /\  ( A [,] B )  C_  dom  ( RR  _D  F
) )  ->  ( A  e.  ( A [,] B )  ->  (
( RR  _D  F
) `  A )  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ) )
2625imp 429 . . . . . 6  |-  ( ( ( Fun  ( RR 
_D  F )  /\  ( A [,] B ) 
C_  dom  ( RR  _D  F ) )  /\  A  e.  ( A [,] B ) )  -> 
( ( RR  _D  F ) `  A
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
2711, 17, 24, 26syl21anc 1217 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  A
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
28 ffun 5556 . . . . . . 7  |-  ( abs
: CC --> RR  ->  Fun 
abs )
293, 28ax-mp 5 . . . . . 6  |-  Fun  abs
30 imassrn 5175 . . . . . . . 8  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  ran  ( RR  _D  F
)
31 frn 5560 . . . . . . . . 9  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  ran  ( RR  _D  F )  C_  CC )
328, 31ax-mp 5 . . . . . . . 8  |-  ran  ( RR  _D  F )  C_  CC
3330, 32sstri 3360 . . . . . . 7  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  CC
343fdmi 5559 . . . . . . 7  |-  dom  abs  =  CC
3533, 34sseqtr4i 3384 . . . . . 6  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  dom  abs
36 funfvima2 5948 . . . . . 6  |-  ( ( Fun  abs  /\  (
( RR  _D  F
) " ( A [,] B ) ) 
C_  dom  abs )  ->  ( ( ( RR 
_D  F ) `  A )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  (
( RR  _D  F
) `  A )
)  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ) )
3729, 35, 36mp2an 672 . . . . 5  |-  ( ( ( RR  _D  F
) `  A )  e.  ( ( RR  _D  F ) " ( A [,] B ) )  ->  ( abs `  (
( RR  _D  F
) `  A )
)  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
38 ne0i 3638 . . . . 5  |-  ( ( abs `  ( ( RR  _D  F ) `
 A ) )  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  =/=  (/) )
3927, 37, 383syl 20 . . . 4  |-  ( ph  ->  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  =/=  (/) )
40 ax-resscn 9331 . . . . . . . 8  |-  RR  C_  CC
41 ssid 3370 . . . . . . . 8  |-  CC  C_  CC
42 cncfss 20455 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
4340, 41, 42mp2an 672 . . . . . . 7  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4443, 12sseldi 3349 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
45 cniccbdd 20925 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  E. a  e.  RR  A. x  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )
4618, 20, 44, 45syl3anc 1218 . . . . 5  |-  ( ph  ->  E. a  e.  RR  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  x ) )  <_ 
a )
47 fvelima 5738 . . . . . . . . . 10  |-  ( ( Fun  abs  /\  b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) )  ->  E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b )
4829, 47mpan 670 . . . . . . . . 9  |-  ( b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  ->  E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b )
49 fvelima 5738 . . . . . . . . . . . . . 14  |-  ( ( Fun  ( RR  _D  F )  /\  y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) )  ->  E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y )
5010, 49mpan 670 . . . . . . . . . . . . 13  |-  ( y  e.  ( ( RR 
_D  F ) "
( A [,] B
) )  ->  E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y )
51 fvres 5699 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  ( A [,] B )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 b )  =  ( ( RR  _D  F ) `  b
) )
5251adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 b )  =  ( ( RR  _D  F ) `  b
) )
5352fveq2d 5690 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  b
) )  =  ( abs `  ( ( RR  _D  F ) `
 b ) ) )
54 fveq2 5686 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  b  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x )  =  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  b ) )
5554fveq2d 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  b  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  x
) )  =  ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  b ) ) )
5655breq1d 4297 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  (
( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  <->  ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  b ) )  <_  a )
)
5756rspccva 3067 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  b
) )  <_  a
)
5853, 57eqbrtrrd 4309 . . . . . . . . . . . . . . . 16  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( RR 
_D  F ) `  b ) )  <_ 
a )
5958adantll 713 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  b  e.  ( A [,] B ) )  -> 
( abs `  (
( RR  _D  F
) `  b )
)  <_  a )
60 fveq2 5686 . . . . . . . . . . . . . . . 16  |-  ( ( ( RR  _D  F
) `  b )  =  y  ->  ( abs `  ( ( RR  _D  F ) `  b
) )  =  ( abs `  y ) )
6160breq1d 4297 . . . . . . . . . . . . . . 15  |-  ( ( ( RR  _D  F
) `  b )  =  y  ->  ( ( abs `  ( ( RR  _D  F ) `
 b ) )  <_  a  <->  ( abs `  y )  <_  a
) )
6259, 61syl5ibcom 220 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  b  e.  ( A [,] B ) )  -> 
( ( ( RR 
_D  F ) `  b )  =  y  ->  ( abs `  y
)  <_  a )
)
6362rexlimdva 2836 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y  ->  ( abs `  y
)  <_  a )
)
6450, 63syl5 32 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( y  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  y
)  <_  a )
)
6564imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  y  e.  ( ( RR  _D  F ) "
( A [,] B
) ) )  -> 
( abs `  y
)  <_  a )
66 breq1 4290 . . . . . . . . . . 11  |-  ( ( abs `  y )  =  b  ->  (
( abs `  y
)  <_  a  <->  b  <_  a ) )
6765, 66syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  y  e.  ( ( RR  _D  F ) "
( A [,] B
) ) )  -> 
( ( abs `  y
)  =  b  -> 
b  <_  a )
)
6867rexlimdva 2836 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b  -> 
b  <_  a )
)
6948, 68syl5 32 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( b  e.  ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) )  ->  b  <_  a
) )
7069ralrimiv 2793 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  A. b  e.  ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) b  <_  a )
7170ex 434 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a  ->  A. b  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) b  <_  a ) )
7271reximdva 2823 . . . . 5  |-  ( ph  ->  ( E. a  e.  RR  A. x  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  ->  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
) )
7346, 72mpd 15 . . . 4  |-  ( ph  ->  E. a  e.  RR  A. b  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) b  <_  a )
74 suprcl 10282 . . . 4  |-  ( ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR  /\  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  =/=  (/)  /\  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)  ->  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  e.  RR )
757, 39, 73, 74syl3anc 1218 . . 3  |-  ( ph  ->  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )  e.  RR )
761, 75syl5eqel 2522 . 2  |-  ( ph  ->  K  e.  RR )
77 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  ( A [,] B ) )
78 fvres 5699 . . . . . . . . . . 11  |-  ( y  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 y )  =  ( F `  y
) )
7977, 78syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  =  ( F `  y ) )
80 c1liplem1.cn . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
81 cncff 20449 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
8280, 81syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
8382ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( A [,] B
) ) : ( A [,] B ) --> RR )
8483, 77ffvelrnd 5839 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  e.  RR )
8584recnd 9404 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  e.  CC )
8679, 85eqeltrrd 2513 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  y )  e.  CC )
87 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  ( A [,] B ) )
88 fvres 5699 . . . . . . . . . . 11  |-  ( x  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 x )  =  ( F `  x
) )
8987, 88syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  =  ( F `  x ) )
9083, 87ffvelrnd 5839 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  e.  RR )
9190recnd 9404 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  e.  CC )
9289, 91eqeltrrd 2513 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  x )  e.  CC )
9386, 92subcld 9711 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F `  y )  -  ( F `  x ) )  e.  CC )
94 iccssre 11369 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
9518, 20, 94syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
9695ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( A [,] B )  C_  RR )
9796, 77sseldd 3352 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  RR )
9896, 87sseldd 3352 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  RR )
9997, 98resubcld 9768 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  RR )
10099recnd 9404 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  CC )
101 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  <  y )
102 difrp 11016 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  <->  ( y  -  x )  e.  RR+ ) )
10398, 97, 102syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x  <  y  <->  ( y  -  x )  e.  RR+ ) )
104101, 103mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  RR+ )
105104rpne0d 11024 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  =/=  0
)
10693, 100, 105absdivd 12933 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  =  ( ( abs `  ( ( F `  y )  -  ( F `  x ) ) )  /  ( abs `  (
y  -  x ) ) ) )
1076a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  C_  RR )
10839ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  =/=  (/) )
10973ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)
11029a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  Fun  abs )
11193, 100, 105divcld 10099 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e.  CC )
112111, 34syl6eleqr 2529 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e. 
dom  abs )
11398rexrd 9425 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  RR* )
11497rexrd 9425 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  RR* )
11598, 97, 101ltled 9514 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  <_  y )
116 ubicc2 11394 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  y  e.  ( x [,] y
) )
117113, 114, 115, 116syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  ( x [,] y
) )
118 fvres 5699 . . . . . . . . . . . . . 14  |-  ( y  e.  ( x [,] y )  ->  (
( F  |`  (
x [,] y ) ) `  y )  =  ( F `  y ) )
119117, 118syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( x [,] y ) ) `  y )  =  ( F `  y ) )
120 lbicc2 11393 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  x  e.  ( x [,] y
) )
121113, 114, 115, 120syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  ( x [,] y
) )
122 fvres 5699 . . . . . . . . . . . . . 14  |-  ( x  e.  ( x [,] y )  ->  (
( F  |`  (
x [,] y ) ) `  x )  =  ( F `  x ) )
123121, 122syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( x [,] y ) ) `  x )  =  ( F `  x ) )
124119, 123oveq12d 6104 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F  |`  (
x [,] y ) ) `  y )  -  ( ( F  |`  ( x [,] y
) ) `  x
) )  =  ( ( F `  y
)  -  ( F `
 x ) ) )
125124oveq1d 6101 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  =  ( ( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )
126 iccss2 11358 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  -> 
( x [,] y
)  C_  ( A [,] B ) )
127126ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x [,] y )  C_  ( A [,] B ) )
128 resabs1 5134 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y ) 
C_  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  =  ( F  |`  ( x [,] y ) ) )
129127, 128syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  =  ( F  |`  ( x [,] y ) ) )
13080ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR ) )
131 rescncf 20453 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y ) 
C_  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) ) )
132127, 130, 131sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) )
133129, 132eqeltrrd 2513 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) )
13440a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  RR  C_  CC )
135 c1liplem1.f . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
136135ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  F  e.  ( CC  ^pm  RR ) )
137 cnex 9355 . . . . . . . . . . . . . . . . . . . 20  |-  CC  e.  _V
138 reex 9365 . . . . . . . . . . . . . . . . . . . 20  |-  RR  e.  _V
139137, 138elpm2 7236 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
140139simplbi 460 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( CC  ^pm  RR )  ->  F : dom  F --> CC )
141136, 140syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  F : dom  F --> CC )
142139simprbi 464 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
143136, 142syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  F  C_  RR )
144 iccssre 11369 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x [,] y
)  C_  RR )
14598, 97, 144syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x [,] y )  C_  RR )
146 eqid 2438 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
147146tgioo2 20360 . . . . . . . . . . . . . . . . . 18  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
148146, 147dvres 21366 . . . . . . . . . . . . . . . . 17  |-  ( ( ( RR  C_  CC  /\  F : dom  F --> CC )  /\  ( dom  F  C_  RR  /\  (
x [,] y ) 
C_  RR ) )  ->  ( RR  _D  ( F  |`  ( x [,] y ) ) )  =  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) ) )
149134, 141, 143, 145, 148syl22anc 1219 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( RR  _D  ( F  |`  (
x [,] y ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( x [,] y ) ) ) )
150 iccntr 20378 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) )  =  ( x (,) y
) )
15198, 97, 150syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  (
x [,] y ) )  =  ( x (,) y ) )
152151reseq2d 5105 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) )  =  ( ( RR 
_D  F )  |`  ( x (,) y
) ) )
153149, 152eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( RR  _D  ( F  |`  (
x [,] y ) ) )  =  ( ( RR  _D  F
)  |`  ( x (,) y ) ) )
154153dmeqd 5037 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( RR 
_D  ( F  |`  ( x [,] y
) ) )  =  dom  ( ( RR 
_D  F )  |`  ( x (,) y
) ) )
155 ioossicc 11373 . . . . . . . . . . . . . . . . 17  |-  ( x (,) y )  C_  ( x [,] y
)
156155, 127syl5ss 3362 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x (,) y )  C_  ( A [,] B ) )
15717ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( A [,] B )  C_  dom  ( RR  _D  F
) )
158156, 157sstrd 3361 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x (,) y )  C_  dom  ( RR  _D  F
) )
159 ssdmres 5127 . . . . . . . . . . . . . . 15  |-  ( ( x (,) y ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( x (,) y
) )  =  ( x (,) y ) )
160158, 159sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( ( RR  _D  F )  |`  ( x (,) y
) )  =  ( x (,) y ) )
161154, 160eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( RR 
_D  ( F  |`  ( x [,] y
) ) )  =  ( x (,) y
) )
16298, 97, 101, 133, 161mvth 21444 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  E. a  e.  ( x (,) y
) ( ( RR 
_D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) ) )
163153fveq1d 5688 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( RR  _D  F )  |`  (
x (,) y ) ) `  a ) )
164163adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  =  ( ( ( RR  _D  F )  |`  ( x (,) y
) ) `  a
) )
165 fvres 5699 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( x (,) y )  ->  (
( ( RR  _D  F )  |`  (
x (,) y ) ) `  a )  =  ( ( RR 
_D  F ) `  a ) )
166165ad2antll 728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( ( RR 
_D  F )  |`  ( x (,) y
) ) `  a
)  =  ( ( RR  _D  F ) `
 a ) )
167164, 166eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  =  ( ( RR 
_D  F ) `  a ) )
16810a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  ->  Fun  ( RR  _D  F
) )
16917ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( A [,] B
)  C_  dom  ( RR 
_D  F ) )
170156sseld 3350 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( a  e.  ( x (,) y
)  ->  a  e.  ( A [,] B ) ) )
171170impr 619 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
a  e.  ( A [,] B ) )
172 funfvima2 5948 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  ( RR  _D  F )  /\  ( A [,] B )  C_  dom  ( RR  _D  F
) )  ->  (
a  e.  ( A [,] B )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) ) )
173172imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Fun  ( RR 
_D  F )  /\  ( A [,] B ) 
C_  dom  ( RR  _D  F ) )  /\  a  e.  ( A [,] B ) )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
174168, 169, 171, 173syl21anc 1217 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
175167, 174eqeltrd 2512 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) )
176 eleq1 2498 . . . . . . . . . . . . . . 15  |-  ( ( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `
 a )  =  ( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  ->  ( ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  <-> 
( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
177175, 176syl5ibcom 220 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( ( RR 
_D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  ->  (
( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) ) )
178177expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( a  e.  ( x (,) y
)  ->  ( (
( RR  _D  ( F  |`  ( x [,] y ) ) ) `
 a )  =  ( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  ->  ( ( ( ( F  |`  (
x [,] y ) ) `  y )  -  ( ( F  |`  ( x [,] y
) ) `  x
) )  /  (
y  -  x ) )  e.  ( ( RR  _D  F )
" ( A [,] B ) ) ) ) )
179178rexlimdv 2835 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( E. a  e.  ( x (,) y ) ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  ->  (
( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) ) )
180162, 179mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) )
181125, 180eqeltrrd 2513 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e.  ( ( RR  _D  F ) " ( A [,] B ) ) )
182 funfvima 5947 . . . . . . . . . . 11  |-  ( ( Fun  abs  /\  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) )  e.  dom  abs )  ->  ( ( ( ( F `  y )  -  ( F `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ) )
183182imp 429 . . . . . . . . . 10  |-  ( ( ( Fun  abs  /\  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) )  e.  dom  abs )  /\  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) )  -> 
( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
184110, 112, 181, 183syl21anc 1217 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
185 suprub 10283 . . . . . . . . 9  |-  ( ( ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR  /\  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  =/=  (/)  /\  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)  /\  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )  ->  ( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  <_  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  ) )
186107, 108, 109, 184, 185syl31anc 1221 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  <_  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  ) )
187186, 1syl6breqr 4327 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  <_  K )
188106, 187eqbrtrrd 4309 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( abs `  ( ( F `
 y )  -  ( F `  x ) ) )  /  ( abs `  ( y  -  x ) ) )  <_  K )
18993abscld 12914 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  e.  RR )
19076ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  K  e.  RR )
191100, 105absrpcld 12926 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( y  -  x
) )  e.  RR+ )
192189, 190, 191ledivmuld 11068 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  /  ( abs `  ( y  -  x
) ) )  <_  K 
<->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( ( abs `  ( y  -  x ) )  x.  K ) ) )
193188, 192mpbid 210 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
( abs `  (
y  -  x ) )  x.  K ) )
194191rpcnd 11021 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( y  -  x
) )  e.  CC )
195190recnd 9404 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  K  e.  CC )
196194, 195mulcomd 9399 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( abs `  ( y  -  x ) )  x.  K )  =  ( K  x.  ( abs `  ( y  -  x
) ) ) )
197193, 196breqtrd 4311 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  ( K  x.  ( abs `  ( y  -  x
) ) ) )
198197ex 434 . . 3  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  ->  (
x  <  y  ->  ( abs `  ( ( F `  y )  -  ( F `  x ) ) )  <_  ( K  x.  ( abs `  ( y  -  x ) ) ) ) )
199198ralrimivva 2803 . 2  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) )
20076, 199jca 532 1  |-  ( ph  ->  ( K  e.  RR  /\ 
A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    C_ wss 3323   (/)c0 3632   class class class wbr 4287   dom cdm 4835   ran crn 4836    |` cres 4837   "cima 4838   Fun wfun 5407   -->wf 5409   ` cfv 5413  (class class class)co 6086    ^pm cpm 7207   supcsup 7682   CCcc 9272   RRcr 9273    x. cmul 9279   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   RR+crp 10983   (,)cioo 11292   [,]cicc 11295   abscabs 12715   TopOpenctopn 14352   topGenctg 14368  ℂfldccnfld 17798   intcnt 18601   -cn->ccncf 20432    _D cdv 21318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-cmp 18970  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322
This theorem is referenced by:  c1lip1  21449
  Copyright terms: Public domain W3C validator