MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip2 Structured version   Unicode version

Theorem c1lip2 22267
Description: C1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
c1lip2.a  |-  ( ph  ->  A  e.  RR )
c1lip2.b  |-  ( ph  ->  B  e.  RR )
c1lip2.f  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  1 )
)
c1lip2.rn  |-  ( ph  ->  ran  F  C_  RR )
c1lip2.dm  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
Assertion
Ref Expression
c1lip2  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Distinct variable groups:    ph, x, y, k    x, A, y, k    x, B, y, k    x, F, y, k

Proof of Theorem c1lip2
StepHypRef Expression
1 c1lip2.a . 2  |-  ( ph  ->  A  e.  RR )
2 c1lip2.b . 2  |-  ( ph  ->  B  e.  RR )
3 c1lip2.f . . 3  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  1 )
)
4 ax-resscn 9561 . . . . 5  |-  RR  C_  CC
5 1nn0 10823 . . . . 5  |-  1  e.  NN0
6 elcpn 22205 . . . . 5  |-  ( ( RR  C_  CC  /\  1  e.  NN0 )  ->  ( F  e.  ( (
C^n `  RR ) `  1 )  <->  ( F  e.  ( CC 
^pm  RR )  /\  (
( RR  Dn
F ) `  1
)  e.  ( dom 
F -cn-> CC ) ) ) )
74, 5, 6mp2an 672 . . . 4  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( ( RR  Dn F ) `
 1 )  e.  ( dom  F -cn-> CC ) ) )
87simplbi 460 . . 3  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  ->  F  e.  ( CC  ^pm 
RR ) )
93, 8syl 16 . 2  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
10 c1lip2.dm . . 3  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
11 pmfun 7450 . . . . . . . . 9  |-  ( F  e.  ( CC  ^pm  RR )  ->  Fun  F )
129, 11syl 16 . . . . . . . 8  |-  ( ph  ->  Fun  F )
13 funfn 5623 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
1412, 13sylib 196 . . . . . . 7  |-  ( ph  ->  F  Fn  dom  F
)
15 c1lip2.rn . . . . . . 7  |-  ( ph  ->  ran  F  C_  RR )
16 df-f 5598 . . . . . . 7  |-  ( F : dom  F --> RR  <->  ( F  Fn  dom  F  /\  ran  F 
C_  RR ) )
1714, 15, 16sylanbrc 664 . . . . . 6  |-  ( ph  ->  F : dom  F --> RR )
18 cnex 9585 . . . . . . . . 9  |-  CC  e.  _V
19 reex 9595 . . . . . . . . 9  |-  RR  e.  _V
2018, 19elpm2 7462 . . . . . . . 8  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2120simprbi 464 . . . . . . 7  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
229, 21syl 16 . . . . . 6  |-  ( ph  ->  dom  F  C_  RR )
23 dvfre 22222 . . . . . 6  |-  ( ( F : dom  F --> RR  /\  dom  F  C_  RR )  ->  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> RR )
2417, 22, 23syl2anc 661 . . . . 5  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
25 0p1e1 10659 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2625fveq2i 5875 . . . . . . . . . 10  |-  ( ( RR  Dn F ) `  ( 0  +  1 ) )  =  ( ( RR  Dn F ) `
 1 )
27 0nn0 10822 . . . . . . . . . . . 12  |-  0  e.  NN0
28 dvnp1 22196 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR )  /\  0  e.  NN0 )  ->  ( ( RR  Dn F ) `
 ( 0  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  0
) ) )
294, 27, 28mp3an13 1315 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( ( RR  Dn F ) `
 ( 0  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  0
) ) )
309, 29syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  Dn F ) `  ( 0  +  1 ) )  =  ( RR  _D  ( ( RR  Dn F ) `  0 ) ) )
3126, 30syl5eqr 2522 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  =  ( RR  _D  ( ( RR  Dn F ) `  0 ) ) )
32 dvn0 22195 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR ) )  ->  (
( RR  Dn
F ) `  0
)  =  F )
334, 9, 32sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  Dn F ) ` 
0 )  =  F )
3433oveq2d 6311 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
( RR  Dn
F ) `  0
) )  =  ( RR  _D  F ) )
3531, 34eqtrd 2508 . . . . . . . 8  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  =  ( RR  _D  F ) )
367simprbi 464 . . . . . . . . 9  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  -> 
( ( RR  Dn F ) ` 
1 )  e.  ( dom  F -cn-> CC ) )
373, 36syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  e.  ( dom  F -cn-> CC ) )
3835, 37eqeltrrd 2556 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  e.  ( dom 
F -cn-> CC ) )
39 cncff 21265 . . . . . . 7  |-  ( ( RR  _D  F )  e.  ( dom  F -cn->
CC )  ->  ( RR  _D  F ) : dom  F --> CC )
40 fdm 5741 . . . . . . 7  |-  ( ( RR  _D  F ) : dom  F --> CC  ->  dom  ( RR  _D  F
)  =  dom  F
)
4138, 39, 403syl 20 . . . . . 6  |-  ( ph  ->  dom  ( RR  _D  F )  =  dom  F )
4241feq2d 5724 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : dom  F --> RR ) )
4324, 42mpbid 210 . . . 4  |-  ( ph  ->  ( RR  _D  F
) : dom  F --> RR )
44 cncffvrn 21270 . . . . 5  |-  ( ( RR  C_  CC  /\  ( RR  _D  F )  e.  ( dom  F -cn-> CC ) )  ->  (
( RR  _D  F
)  e.  ( dom 
F -cn-> RR )  <->  ( RR  _D  F ) : dom  F --> RR ) )
454, 38, 44sylancr 663 . . . 4  |-  ( ph  ->  ( ( RR  _D  F )  e.  ( dom  F -cn-> RR )  <-> 
( RR  _D  F
) : dom  F --> RR ) )
4643, 45mpbird 232 . . 3  |-  ( ph  ->  ( RR  _D  F
)  e.  ( dom 
F -cn-> RR ) )
47 rescncf 21269 . . 3  |-  ( ( A [,] B ) 
C_  dom  F  ->  ( ( RR  _D  F
)  e.  ( dom 
F -cn-> RR )  ->  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) ) )
4810, 46, 47sylc 60 . 2  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4919prid1 4141 . . . . . . . . 9  |-  RR  e.  { RR ,  CC }
50 nn0uz 11128 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
515, 50eleqtri 2553 . . . . . . . . 9  |-  1  e.  ( ZZ>= `  0 )
52 cpnord 22206 . . . . . . . . 9  |-  ( ( RR  e.  { RR ,  CC }  /\  0  e.  NN0  /\  1  e.  ( ZZ>= `  0 )
)  ->  ( (
C^n `  RR ) `  1 )  C_  ( ( C^n `
 RR ) ` 
0 ) )
5349, 27, 51, 52mp3an 1324 . . . . . . . 8  |-  ( ( C^n `  RR ) `  1 )  C_  ( ( C^n `
 RR ) ` 
0 )
5453, 3sseldi 3507 . . . . . . 7  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  0 )
)
55 elcpn 22205 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  0  e.  NN0 )  ->  ( F  e.  ( (
C^n `  RR ) `  0 )  <->  ( F  e.  ( CC 
^pm  RR )  /\  (
( RR  Dn
F ) `  0
)  e.  ( dom 
F -cn-> CC ) ) ) )
564, 27, 55mp2an 672 . . . . . . . 8  |-  ( F  e.  ( ( C^n `  RR ) `
 0 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( ( RR  Dn F ) `
 0 )  e.  ( dom  F -cn-> CC ) ) )
5756simprbi 464 . . . . . . 7  |-  ( F  e.  ( ( C^n `  RR ) `
 0 )  -> 
( ( RR  Dn F ) ` 
0 )  e.  ( dom  F -cn-> CC ) )
5854, 57syl 16 . . . . . 6  |-  ( ph  ->  ( ( RR  Dn F ) ` 
0 )  e.  ( dom  F -cn-> CC ) )
5933, 58eqeltrrd 2556 . . . . 5  |-  ( ph  ->  F  e.  ( dom 
F -cn-> CC ) )
60 cncffvrn 21270 . . . . 5  |-  ( ( RR  C_  CC  /\  F  e.  ( dom  F -cn-> CC ) )  ->  ( F  e.  ( dom  F
-cn-> RR )  <->  F : dom  F --> RR ) )
614, 59, 60sylancr 663 . . . 4  |-  ( ph  ->  ( F  e.  ( dom  F -cn-> RR )  <-> 
F : dom  F --> RR ) )
6217, 61mpbird 232 . . 3  |-  ( ph  ->  F  e.  ( dom 
F -cn-> RR ) )
63 rescncf 21269 . . 3  |-  ( ( A [,] B ) 
C_  dom  F  ->  ( F  e.  ( dom 
F -cn-> RR )  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) ) )
6410, 62, 63sylc 60 . 2  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
651, 2, 9, 48, 64c1lip1 22266 1  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818    C_ wss 3481   {cpr 4035   class class class wbr 4453   dom cdm 5005   ran crn 5006    |` cres 5007   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^pm cpm 7433   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    <_ cle 9641    - cmin 9817   NN0cn0 10807   ZZ>=cuz 11094   [,]cicc 11544   abscabs 13047   -cn->ccncf 21248    _D cdv 22135    Dncdvn 22136   C^nccpn 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-cmp 19755  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139  df-dvn 22140  df-cpn 22141
This theorem is referenced by:  c1lip3  22268
  Copyright terms: Public domain W3C validator