MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip2 Structured version   Visualization version   Unicode version

Theorem c1lip2 22962
Description: C1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
c1lip2.a  |-  ( ph  ->  A  e.  RR )
c1lip2.b  |-  ( ph  ->  B  e.  RR )
c1lip2.f  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  1 )
)
c1lip2.rn  |-  ( ph  ->  ran  F  C_  RR )
c1lip2.dm  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
Assertion
Ref Expression
c1lip2  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Distinct variable groups:    ph, x, y, k    x, A, y, k    x, B, y, k    x, F, y, k

Proof of Theorem c1lip2
StepHypRef Expression
1 c1lip2.a . 2  |-  ( ph  ->  A  e.  RR )
2 c1lip2.b . 2  |-  ( ph  ->  B  e.  RR )
3 c1lip2.f . . 3  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  1 )
)
4 ax-resscn 9601 . . . . 5  |-  RR  C_  CC
5 1nn0 10892 . . . . 5  |-  1  e.  NN0
6 elcpn 22900 . . . . 5  |-  ( ( RR  C_  CC  /\  1  e.  NN0 )  ->  ( F  e.  ( (
C^n `  RR ) `  1 )  <->  ( F  e.  ( CC 
^pm  RR )  /\  (
( RR  Dn
F ) `  1
)  e.  ( dom 
F -cn-> CC ) ) ) )
74, 5, 6mp2an 679 . . . 4  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( ( RR  Dn F ) `
 1 )  e.  ( dom  F -cn-> CC ) ) )
87simplbi 462 . . 3  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  ->  F  e.  ( CC  ^pm 
RR ) )
93, 8syl 17 . 2  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
10 c1lip2.dm . . 3  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
11 pmfun 7496 . . . . . . . . 9  |-  ( F  e.  ( CC  ^pm  RR )  ->  Fun  F )
129, 11syl 17 . . . . . . . 8  |-  ( ph  ->  Fun  F )
13 funfn 5614 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
1412, 13sylib 200 . . . . . . 7  |-  ( ph  ->  F  Fn  dom  F
)
15 c1lip2.rn . . . . . . 7  |-  ( ph  ->  ran  F  C_  RR )
16 df-f 5589 . . . . . . 7  |-  ( F : dom  F --> RR  <->  ( F  Fn  dom  F  /\  ran  F 
C_  RR ) )
1714, 15, 16sylanbrc 671 . . . . . 6  |-  ( ph  ->  F : dom  F --> RR )
18 cnex 9625 . . . . . . . . 9  |-  CC  e.  _V
19 reex 9635 . . . . . . . . 9  |-  RR  e.  _V
2018, 19elpm2 7508 . . . . . . . 8  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2120simprbi 466 . . . . . . 7  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
229, 21syl 17 . . . . . 6  |-  ( ph  ->  dom  F  C_  RR )
23 dvfre 22917 . . . . . 6  |-  ( ( F : dom  F --> RR  /\  dom  F  C_  RR )  ->  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> RR )
2417, 22, 23syl2anc 667 . . . . 5  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
25 0p1e1 10728 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2625fveq2i 5873 . . . . . . . . . 10  |-  ( ( RR  Dn F ) `  ( 0  +  1 ) )  =  ( ( RR  Dn F ) `
 1 )
27 0nn0 10891 . . . . . . . . . . . 12  |-  0  e.  NN0
28 dvnp1 22891 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR )  /\  0  e.  NN0 )  ->  ( ( RR  Dn F ) `
 ( 0  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  0
) ) )
294, 27, 28mp3an13 1357 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( ( RR  Dn F ) `
 ( 0  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  0
) ) )
309, 29syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  Dn F ) `  ( 0  +  1 ) )  =  ( RR  _D  ( ( RR  Dn F ) `  0 ) ) )
3126, 30syl5eqr 2501 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  =  ( RR  _D  ( ( RR  Dn F ) `  0 ) ) )
32 dvn0 22890 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR ) )  ->  (
( RR  Dn
F ) `  0
)  =  F )
334, 9, 32sylancr 670 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  Dn F ) ` 
0 )  =  F )
3433oveq2d 6311 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
( RR  Dn
F ) `  0
) )  =  ( RR  _D  F ) )
3531, 34eqtrd 2487 . . . . . . . 8  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  =  ( RR  _D  F ) )
367simprbi 466 . . . . . . . . 9  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  -> 
( ( RR  Dn F ) ` 
1 )  e.  ( dom  F -cn-> CC ) )
373, 36syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  e.  ( dom  F -cn-> CC ) )
3835, 37eqeltrrd 2532 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  e.  ( dom 
F -cn-> CC ) )
39 cncff 21937 . . . . . . 7  |-  ( ( RR  _D  F )  e.  ( dom  F -cn->
CC )  ->  ( RR  _D  F ) : dom  F --> CC )
40 fdm 5738 . . . . . . 7  |-  ( ( RR  _D  F ) : dom  F --> CC  ->  dom  ( RR  _D  F
)  =  dom  F
)
4138, 39, 403syl 18 . . . . . 6  |-  ( ph  ->  dom  ( RR  _D  F )  =  dom  F )
4241feq2d 5720 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : dom  F --> RR ) )
4324, 42mpbid 214 . . . 4  |-  ( ph  ->  ( RR  _D  F
) : dom  F --> RR )
44 cncffvrn 21942 . . . . 5  |-  ( ( RR  C_  CC  /\  ( RR  _D  F )  e.  ( dom  F -cn-> CC ) )  ->  (
( RR  _D  F
)  e.  ( dom 
F -cn-> RR )  <->  ( RR  _D  F ) : dom  F --> RR ) )
454, 38, 44sylancr 670 . . . 4  |-  ( ph  ->  ( ( RR  _D  F )  e.  ( dom  F -cn-> RR )  <-> 
( RR  _D  F
) : dom  F --> RR ) )
4643, 45mpbird 236 . . 3  |-  ( ph  ->  ( RR  _D  F
)  e.  ( dom 
F -cn-> RR ) )
47 rescncf 21941 . . 3  |-  ( ( A [,] B ) 
C_  dom  F  ->  ( ( RR  _D  F
)  e.  ( dom 
F -cn-> RR )  ->  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) ) )
4810, 46, 47sylc 62 . 2  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4919prid1 4083 . . . . . . . . 9  |-  RR  e.  { RR ,  CC }
50 1eluzge0 11209 . . . . . . . . 9  |-  1  e.  ( ZZ>= `  0 )
51 cpnord 22901 . . . . . . . . 9  |-  ( ( RR  e.  { RR ,  CC }  /\  0  e.  NN0  /\  1  e.  ( ZZ>= `  0 )
)  ->  ( (
C^n `  RR ) `  1 )  C_  ( ( C^n `
 RR ) ` 
0 ) )
5249, 27, 50, 51mp3an 1366 . . . . . . . 8  |-  ( ( C^n `  RR ) `  1 )  C_  ( ( C^n `
 RR ) ` 
0 )
5352, 3sseldi 3432 . . . . . . 7  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  0 )
)
54 elcpn 22900 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  0  e.  NN0 )  ->  ( F  e.  ( (
C^n `  RR ) `  0 )  <->  ( F  e.  ( CC 
^pm  RR )  /\  (
( RR  Dn
F ) `  0
)  e.  ( dom 
F -cn-> CC ) ) ) )
554, 27, 54mp2an 679 . . . . . . . 8  |-  ( F  e.  ( ( C^n `  RR ) `
 0 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( ( RR  Dn F ) `
 0 )  e.  ( dom  F -cn-> CC ) ) )
5655simprbi 466 . . . . . . 7  |-  ( F  e.  ( ( C^n `  RR ) `
 0 )  -> 
( ( RR  Dn F ) ` 
0 )  e.  ( dom  F -cn-> CC ) )
5753, 56syl 17 . . . . . 6  |-  ( ph  ->  ( ( RR  Dn F ) ` 
0 )  e.  ( dom  F -cn-> CC ) )
5833, 57eqeltrrd 2532 . . . . 5  |-  ( ph  ->  F  e.  ( dom 
F -cn-> CC ) )
59 cncffvrn 21942 . . . . 5  |-  ( ( RR  C_  CC  /\  F  e.  ( dom  F -cn-> CC ) )  ->  ( F  e.  ( dom  F
-cn-> RR )  <->  F : dom  F --> RR ) )
604, 58, 59sylancr 670 . . . 4  |-  ( ph  ->  ( F  e.  ( dom  F -cn-> RR )  <-> 
F : dom  F --> RR ) )
6117, 60mpbird 236 . . 3  |-  ( ph  ->  F  e.  ( dom 
F -cn-> RR ) )
62 rescncf 21941 . . 3  |-  ( ( A [,] B ) 
C_  dom  F  ->  ( F  e.  ( dom 
F -cn-> RR )  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) ) )
6310, 61, 62sylc 62 . 2  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
641, 2, 9, 48, 63c1lip1 22961 1  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889   A.wral 2739   E.wrex 2740    C_ wss 3406   {cpr 3972   class class class wbr 4405   dom cdm 4837   ran crn 4838    |` cres 4839   Fun wfun 5579    Fn wfn 5580   -->wf 5581   ` cfv 5585  (class class class)co 6295    ^pm cpm 7478   CCcc 9542   RRcr 9543   0cc0 9544   1c1 9545    + caddc 9547    x. cmul 9549    <_ cle 9681    - cmin 9865   NN0cn0 10876   ZZ>=cuz 11166   [,]cicc 11645   abscabs 13309   -cn->ccncf 21920    _D cdv 22830    Dncdvn 22831   C^nccpn 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622  ax-addf 9623  ax-mulf 9624
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6920  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7889  df-fi 7930  df-sup 7961  df-inf 7962  df-oi 8030  df-card 8378  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-mulr 15216  df-starv 15217  df-sca 15218  df-vsca 15219  df-ip 15220  df-tset 15221  df-ple 15222  df-ds 15224  df-unif 15225  df-hom 15226  df-cco 15227  df-rest 15333  df-topn 15334  df-0g 15352  df-gsum 15353  df-topgen 15354  df-pt 15355  df-prds 15358  df-xrs 15412  df-qtop 15418  df-imas 15419  df-xps 15422  df-mre 15504  df-mrc 15505  df-acs 15507  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-submnd 16595  df-mulg 16688  df-cntz 16983  df-cmn 17444  df-psmet 18974  df-xmet 18975  df-met 18976  df-bl 18977  df-mopn 18978  df-fbas 18979  df-fg 18980  df-cnfld 18983  df-top 19933  df-bases 19934  df-topon 19935  df-topsp 19936  df-cld 20046  df-ntr 20047  df-cls 20048  df-nei 20126  df-lp 20164  df-perf 20165  df-cn 20255  df-cnp 20256  df-haus 20343  df-cmp 20414  df-tx 20589  df-hmeo 20782  df-fil 20873  df-fm 20965  df-flim 20966  df-flf 20967  df-xms 21347  df-ms 21348  df-tms 21349  df-cncf 21922  df-limc 22833  df-dv 22834  df-dvn 22835  df-cpn 22836
This theorem is referenced by:  c1lip3  22963
  Copyright terms: Public domain W3C validator