MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip1 Unicode version

Theorem c1lip1 19834
Description: C1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
c1lip1.a  |-  ( ph  ->  A  e.  RR )
c1lip1.b  |-  ( ph  ->  B  e.  RR )
c1lip1.f  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
c1lip1.dv  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1lip1.cn  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
Assertion
Ref Expression
c1lip1  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Distinct variable groups:    ph, x, y, k    x, A, y, k    x, B, y, k    x, F, y, k

Proof of Theorem c1lip1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9047 . . . 4  |-  0  e.  RR
2 ne0i 3594 . . . 4  |-  ( 0  e.  RR  ->  RR  =/=  (/) )
31, 2ax-mp 8 . . 3  |-  RR  =/=  (/)
4 ral0 3692 . . . . 5  |-  A. x  e.  (/)  A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) )
5 c1lip1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
65rexrd 9090 . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
7 c1lip1.b . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
87rexrd 9090 . . . . . . . 8  |-  ( ph  ->  B  e.  RR* )
9 icc0 10920 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  B  <  A ) )
106, 8, 9syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( A [,] B )  =  (/)  <->  B  <  A ) )
1110biimpar 472 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  ( A [,] B )  =  (/) )
1211raleqdv 2870 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) )  <->  A. x  e.  (/)  A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
134, 12mpbiri 225 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  A. x  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )
1413ralrimivw 2750 . . 3  |-  ( (
ph  /\  B  <  A )  ->  A. k  e.  RR  A. x  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )
15 r19.2z 3677 . . 3  |-  ( ( RR  =/=  (/)  /\  A. k  e.  RR  A. x  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
163, 14, 15sylancr 645 . 2  |-  ( (
ph  /\  B  <  A )  ->  E. k  e.  RR  A. x  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )
175adantr 452 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  A  e.  RR )
187adantr 452 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  B  e.  RR )
19 simpr 448 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  A  <_  B )
20 c1lip1.f . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
2120adantr 452 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  F  e.  ( CC  ^pm  RR ) )
22 c1lip1.dv . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
2322adantr 452 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B )
-cn-> RR ) )
24 c1lip1.cn . . . . . 6  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
2524adantr 452 . . . . 5  |-  ( (
ph  /\  A  <_  B )  ->  ( F  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR ) )
26 eqid 2404 . . . . 5  |-  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  =  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )
2717, 18, 19, 21, 23, 25, 26c1liplem1 19833 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  ( sup ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  e.  RR  /\  A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  ( sup ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  x.  ( abs `  ( b  -  a
) ) ) ) ) )
28 oveq1 6047 . . . . . . . 8  |-  ( k  =  sup ( ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) ,  RR ,  <  )  ->  ( k  x.  ( abs `  (
b  -  a ) ) )  =  ( sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )  x.  ( abs `  (
b  -  a ) ) ) )
2928breq2d 4184 . . . . . . 7  |-  ( k  =  sup ( ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) ,  RR ,  <  )  ->  ( ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) )  <->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  ( sup ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  x.  ( abs `  ( b  -  a
) ) ) ) )
3029imbi2d 308 . . . . . 6  |-  ( k  =  sup ( ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) ,  RR ,  <  )  ->  ( ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  <-> 
( a  <  b  ->  ( abs `  (
( F `  b
)  -  ( F `
 a ) ) )  <_  ( sup ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  x.  ( abs `  ( b  -  a
) ) ) ) ) )
31302ralbidv 2708 . . . . 5  |-  ( k  =  sup ( ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) ,  RR ,  <  )  ->  ( A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  <->  A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  ( sup ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  x.  ( abs `  ( b  -  a
) ) ) ) ) )
3231rspcev 3012 . . . 4  |-  ( ( sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )  e.  RR  /\  A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  ( sup ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  x.  ( abs `  ( b  -  a
) ) ) ) )  ->  E. k  e.  RR  A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) ) )
3327, 32syl 16 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  E. k  e.  RR  A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) ) )
34 iccssre 10948 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
355, 7, 34syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( A [,] B
)  C_  RR )
3635ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  ->  ( A [,] B )  C_  RR )
3736sseld 3307 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  ->  (
x  e.  ( A [,] B )  ->  x  e.  RR )
)
3836sseld 3307 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  ->  (
y  e.  ( A [,] B )  -> 
y  e.  RR ) )
3937, 38anim12d 547 . . . . . . . 8  |-  ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  ->  (
( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  y  e.  RR ) ) )
4039imp 419 . . . . . . 7  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  e.  RR  /\  y  e.  RR )
)
41 lttri4 9115 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  \/  x  =  y  \/  y  <  x ) )
4240, 41syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
43 breq1 4175 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  <  b  <->  x  <  b ) )
44 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( a  =  x  ->  ( F `  a )  =  ( F `  x ) )
4544oveq2d 6056 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  (
( F `  b
)  -  ( F `
 a ) )  =  ( ( F `
 b )  -  ( F `  x ) ) )
4645fveq2d 5691 . . . . . . . . . . . 12  |-  ( a  =  x  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  =  ( abs `  ( ( F `  b )  -  ( F `  x ) ) ) )
47 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( a  =  x  ->  (
b  -  a )  =  ( b  -  x ) )
4847fveq2d 5691 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  ( abs `  ( b  -  a ) )  =  ( abs `  (
b  -  x ) ) )
4948oveq2d 6056 . . . . . . . . . . . 12  |-  ( a  =  x  ->  (
k  x.  ( abs `  ( b  -  a
) ) )  =  ( k  x.  ( abs `  ( b  -  x ) ) ) )
5046, 49breq12d 4185 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
( abs `  (
( F `  b
)  -  ( F `
 a ) ) )  <_  ( k  x.  ( abs `  (
b  -  a ) ) )  <->  ( abs `  ( ( F `  b )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( b  -  x
) ) ) ) )
5143, 50imbi12d 312 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( a  <  b  ->  ( abs `  (
( F `  b
)  -  ( F `
 a ) ) )  <_  ( k  x.  ( abs `  (
b  -  a ) ) ) )  <->  ( x  <  b  ->  ( abs `  ( ( F `  b )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( b  -  x
) ) ) ) ) )
52 breq2 4176 . . . . . . . . . . 11  |-  ( b  =  y  ->  (
x  <  b  <->  x  <  y ) )
53 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( b  =  y  ->  ( F `  b )  =  ( F `  y ) )
5453oveq1d 6055 . . . . . . . . . . . . 13  |-  ( b  =  y  ->  (
( F `  b
)  -  ( F `
 x ) )  =  ( ( F `
 y )  -  ( F `  x ) ) )
5554fveq2d 5691 . . . . . . . . . . . 12  |-  ( b  =  y  ->  ( abs `  ( ( F `
 b )  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  x ) ) ) )
56 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( b  =  y  ->  (
b  -  x )  =  ( y  -  x ) )
5756fveq2d 5691 . . . . . . . . . . . . 13  |-  ( b  =  y  ->  ( abs `  ( b  -  x ) )  =  ( abs `  (
y  -  x ) ) )
5857oveq2d 6056 . . . . . . . . . . . 12  |-  ( b  =  y  ->  (
k  x.  ( abs `  ( b  -  x
) ) )  =  ( k  x.  ( abs `  ( y  -  x ) ) ) )
5955, 58breq12d 4185 . . . . . . . . . . 11  |-  ( b  =  y  ->  (
( abs `  (
( F `  b
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
b  -  x ) ) )  <->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) )
6052, 59imbi12d 312 . . . . . . . . . 10  |-  ( b  =  y  ->  (
( x  <  b  ->  ( abs `  (
( F `  b
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
b  -  x ) ) ) )  <->  ( x  <  y  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) ) )
6151, 60rspc2v 3018 . . . . . . . . 9  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  -> 
( A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( x  < 
y  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) ) )
6261ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y )  ->  ( A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( x  < 
y  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) ) )
63 pm2.27 37 . . . . . . . . 9  |-  ( x  <  y  ->  (
( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
6463adantl 453 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y )  ->  (
( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
6562, 64syld 42 . . . . . . 7  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y )  ->  ( A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
66 0le0 10037 . . . . . . . . . . 11  |-  0  <_  0
67 fvres 5704 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 x )  =  ( F `  x
) )
6867ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
( F  |`  ( A [,] B ) ) `
 x )  =  ( F `  x
) )
69 cncff 18876 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
7024, 69syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
7170ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B
) --> RR )
72 simpl 444 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
73 ffvelrn 5827 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR  /\  x  e.  ( A [,] B ) )  -> 
( ( F  |`  ( A [,] B ) ) `  x )  e.  RR )
7471, 72, 73syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
( F  |`  ( A [,] B ) ) `
 x )  e.  RR )
7568, 74eqeltrrd 2479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( F `  x )  e.  RR )
7675recnd 9070 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( F `  x )  e.  CC )
7776subidd 9355 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
( F `  x
)  -  ( F `
 x ) )  =  0 )
7877abs00bd 12051 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( abs `  ( ( F `
 x )  -  ( F `  x ) ) )  =  0 )
7935ad3antrrr 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( A [,] B )  C_  RR )
80 simprl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  x  e.  ( A [,] B
) )
8179, 80sseldd 3309 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  x  e.  RR )
8281recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  x  e.  CC )
8382subidd 9355 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  -  x )  =  0 )
8483abs00bd 12051 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( abs `  ( x  -  x ) )  =  0 )
8584oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
k  x.  ( abs `  ( x  -  x
) ) )  =  ( k  x.  0 ) )
86 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  k  e.  RR )
8786recnd 9070 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  k  e.  CC )
8887mul01d 9221 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
k  x.  0 )  =  0 )
8985, 88eqtrd 2436 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
k  x.  ( abs `  ( x  -  x
) ) )  =  0 )
9078, 89breq12d 4185 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
( abs `  (
( F `  x
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
x  -  x ) ) )  <->  0  <_  0 ) )
9166, 90mpbiri 225 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( abs `  ( ( F `
 x )  -  ( F `  x ) ) )  <_  (
k  x.  ( abs `  ( x  -  x
) ) ) )
92 fveq2 5687 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
9392oveq1d 6055 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( F `  x
)  -  ( F `
 x ) )  =  ( ( F `
 y )  -  ( F `  x ) ) )
9493fveq2d 5691 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( abs `  ( ( F `
 x )  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  x ) ) ) )
95 oveq1 6047 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  -  x )  =  ( y  -  x ) )
9695fveq2d 5691 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( abs `  ( x  -  x ) )  =  ( abs `  (
y  -  x ) ) )
9796oveq2d 6056 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
k  x.  ( abs `  ( x  -  x
) ) )  =  ( k  x.  ( abs `  ( y  -  x ) ) ) )
9894, 97breq12d 4185 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( abs `  (
( F `  x
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
x  -  x ) ) )  <->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) )
9991, 98syl5ibcom 212 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  =  y  -> 
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
10099imp 419 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  x  =  y )  -> 
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )
101100a1d 23 . . . . . . 7  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  x  =  y )  -> 
( A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
102 breq1 4175 . . . . . . . . . . . 12  |-  ( a  =  y  ->  (
a  <  b  <->  y  <  b ) )
103 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  ( F `  a )  =  ( F `  y ) )
104103oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( a  =  y  ->  (
( F `  b
)  -  ( F `
 a ) )  =  ( ( F `
 b )  -  ( F `  y ) ) )
105104fveq2d 5691 . . . . . . . . . . . . 13  |-  ( a  =  y  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  =  ( abs `  ( ( F `  b )  -  ( F `  y ) ) ) )
106 oveq2 6048 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  (
b  -  a )  =  ( b  -  y ) )
107106fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( a  =  y  ->  ( abs `  ( b  -  a ) )  =  ( abs `  (
b  -  y ) ) )
108107oveq2d 6056 . . . . . . . . . . . . 13  |-  ( a  =  y  ->  (
k  x.  ( abs `  ( b  -  a
) ) )  =  ( k  x.  ( abs `  ( b  -  y ) ) ) )
109105, 108breq12d 4185 . . . . . . . . . . . 12  |-  ( a  =  y  ->  (
( abs `  (
( F `  b
)  -  ( F `
 a ) ) )  <_  ( k  x.  ( abs `  (
b  -  a ) ) )  <->  ( abs `  ( ( F `  b )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( b  -  y
) ) ) ) )
110102, 109imbi12d 312 . . . . . . . . . . 11  |-  ( a  =  y  ->  (
( a  <  b  ->  ( abs `  (
( F `  b
)  -  ( F `
 a ) ) )  <_  ( k  x.  ( abs `  (
b  -  a ) ) ) )  <->  ( y  <  b  ->  ( abs `  ( ( F `  b )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( b  -  y
) ) ) ) ) )
111 breq2 4176 . . . . . . . . . . . 12  |-  ( b  =  x  ->  (
y  <  b  <->  y  <  x ) )
112 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( b  =  x  ->  ( F `  b )  =  ( F `  x ) )
113112oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( b  =  x  ->  (
( F `  b
)  -  ( F `
 y ) )  =  ( ( F `
 x )  -  ( F `  y ) ) )
114113fveq2d 5691 . . . . . . . . . . . . 13  |-  ( b  =  x  ->  ( abs `  ( ( F `
 b )  -  ( F `  y ) ) )  =  ( abs `  ( ( F `  x )  -  ( F `  y ) ) ) )
115 oveq1 6047 . . . . . . . . . . . . . . 15  |-  ( b  =  x  ->  (
b  -  y )  =  ( x  -  y ) )
116115fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( b  =  x  ->  ( abs `  ( b  -  y ) )  =  ( abs `  (
x  -  y ) ) )
117116oveq2d 6056 . . . . . . . . . . . . 13  |-  ( b  =  x  ->  (
k  x.  ( abs `  ( b  -  y
) ) )  =  ( k  x.  ( abs `  ( x  -  y ) ) ) )
118114, 117breq12d 4185 . . . . . . . . . . . 12  |-  ( b  =  x  ->  (
( abs `  (
( F `  b
)  -  ( F `
 y ) ) )  <_  ( k  x.  ( abs `  (
b  -  y ) ) )  <->  ( abs `  ( ( F `  x )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( x  -  y
) ) ) ) )
119111, 118imbi12d 312 . . . . . . . . . . 11  |-  ( b  =  x  ->  (
( y  <  b  ->  ( abs `  (
( F `  b
)  -  ( F `
 y ) ) )  <_  ( k  x.  ( abs `  (
b  -  y ) ) ) )  <->  ( y  <  x  ->  ( abs `  ( ( F `  x )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( x  -  y
) ) ) ) ) )
120110, 119rspc2v 3018 . . . . . . . . . 10  |-  ( ( y  e.  ( A [,] B )  /\  x  e.  ( A [,] B ) )  -> 
( A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( y  < 
x  ->  ( abs `  ( ( F `  x )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( x  -  y
) ) ) ) ) )
121120ancoms 440 . . . . . . . . 9  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  -> 
( A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( y  < 
x  ->  ( abs `  ( ( F `  x )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( x  -  y
) ) ) ) ) )
122121ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  ( A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( y  < 
x  ->  ( abs `  ( ( F `  x )  -  ( F `  y )
) )  <_  (
k  x.  ( abs `  ( x  -  y
) ) ) ) ) )
123 simpr 448 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  y  <  x )
124 fvres 5704 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 y )  =  ( F `  y
) )
125124ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
( F  |`  ( A [,] B ) ) `
 y )  =  ( F `  y
) )
126 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  -> 
y  e.  ( A [,] B ) )
127 ffvelrn 5827 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR  /\  y  e.  ( A [,] B ) )  -> 
( ( F  |`  ( A [,] B ) ) `  y )  e.  RR )
12871, 126, 127syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  (
( F  |`  ( A [,] B ) ) `
 y )  e.  RR )
129125, 128eqeltrrd 2479 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( F `  y )  e.  RR )
130129recnd 9070 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( F `  y )  e.  CC )
13176, 130abssubd 12210 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( abs `  ( ( F `
 x )  -  ( F `  y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  x ) ) ) )
132131adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  ( abs `  ( ( F `
 x )  -  ( F `  y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  x ) ) ) )
133 recn 9036 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  e.  CC )
134 recn 9036 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  y  e.  CC )
135 abssub 12085 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  -  y ) )  =  ( abs `  ( y  -  x
) ) )
136133, 134, 135syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( abs `  (
x  -  y ) )  =  ( abs `  ( y  -  x
) ) )
13740, 136syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( abs `  ( x  -  y ) )  =  ( abs `  (
y  -  x ) ) )
138137adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  ( abs `  ( x  -  y ) )  =  ( abs `  (
y  -  x ) ) )
139138oveq2d 6056 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  (
k  x.  ( abs `  ( x  -  y
) ) )  =  ( k  x.  ( abs `  ( y  -  x ) ) ) )
140132, 139breq12d 4185 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  (
( abs `  (
( F `  x
)  -  ( F `
 y ) ) )  <_  ( k  x.  ( abs `  (
x  -  y ) ) )  <->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) )
141140biimpd 199 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  (
( abs `  (
( F `  x
)  -  ( F `
 y ) ) )  <_  ( k  x.  ( abs `  (
x  -  y ) ) )  ->  ( abs `  ( ( F `
 y )  -  ( F `  x ) ) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) )
142123, 141embantd 52 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  (
( y  <  x  ->  ( abs `  (
( F `  x
)  -  ( F `
 y ) ) )  <_  ( k  x.  ( abs `  (
x  -  y ) ) ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
143122, 142syld 42 . . . . . . 7  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  y  <  x )  ->  ( A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
14465, 101, 1433jaodan 1250 . . . . . 6  |-  ( ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  /\  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
14542, 144mpdan 650 . . . . 5  |-  ( ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  /\  ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  ->  ( A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
146145ralrimdvva 2761 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  k  e.  RR )  ->  ( A. a  e.  ( A [,] B ) A. b  e.  ( A [,] B ) ( a  <  b  ->  ( abs `  ( ( F `
 b )  -  ( F `  a ) ) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) ) )
147146reximdva 2778 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  ( E. k  e.  RR  A. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( a  < 
b  ->  ( abs `  ( ( F `  b )  -  ( F `  a )
) )  <_  (
k  x.  ( abs `  ( b  -  a
) ) ) )  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) ) )
14833, 147mpd 15 . 2  |-  ( (
ph  /\  A  <_  B )  ->  E. k  e.  RR  A. x  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( k  x.  ( abs `  (
y  -  x ) ) ) )
14916, 148, 7, 5ltlecasei 9137 1  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   (/)c0 3588   class class class wbr 4172    |` cres 4839   "cima 4840   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^pm cpm 6978   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   [,]cicc 10875   abscabs 11994   -cn->ccncf 18859    _D cdv 19703
This theorem is referenced by:  c1lip2  19835
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator