Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnswapid Structured version   Unicode version

Theorem btwnswapid 28179
Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
btwnswapid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  A  =  B ) )

Proof of Theorem btwnswapid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr2 995 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
3 simpr1 994 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 996 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
5 axpasch 23319 . . 3  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. ) ) )
61, 2, 3, 4, 3, 2, 5syl132anc 1237 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. ) ) )
7 simpll 753 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  N  e.  NN )
8 simpr 461 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  x  e.  ( EE `  N
) )
9 simplr1 1030 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
10 axbtwnid 23317 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
x  Btwn  <. A ,  A >.  ->  x  =  A ) )
117, 8, 9, 10syl3anc 1219 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. A ,  A >.  ->  x  =  A ) )
12 simplr2 1031 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
13 axbtwnid 23317 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  (
x  Btwn  <. B ,  B >.  ->  x  =  B ) )
147, 8, 12, 13syl3anc 1219 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. B ,  B >.  ->  x  =  B ) )
1511, 14anim12d 563 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  ( x  =  A  /\  x  =  B ) ) )
16 eqtr2 2477 . . . 4  |-  ( ( x  =  A  /\  x  =  B )  ->  A  =  B )
1715, 16syl6 33 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  A  =  B ) )
1817rexlimdva 2934 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  A  =  B ) )
196, 18syld 44 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2794   <.cop 3978   class class class wbr 4387   ` cfv 5513   NNcn 10420   EEcee 23266    Btwn cbtwn 23267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-er 7198  df-map 7313  df-en 7408  df-dom 7409  df-sdom 7410  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-div 10092  df-nn 10421  df-z 10745  df-uz 10960  df-icc 11405  df-fz 11536  df-ee 23269  df-btwn 23270
This theorem is referenced by:  btwnswapid2  28180  segleantisym  28277  broutsideof2  28284
  Copyright terms: Public domain W3C validator