Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnswapid Structured version   Unicode version

Theorem btwnswapid 29898
Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
btwnswapid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  A  =  B ) )

Proof of Theorem btwnswapid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 455 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr2 1001 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
3 simpr1 1000 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 1002 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
5 axpasch 24449 . . 3  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. ) ) )
61, 2, 3, 4, 3, 2, 5syl132anc 1244 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. ) ) )
7 simpll 751 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  N  e.  NN )
8 simpr 459 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  x  e.  ( EE `  N
) )
9 simplr1 1036 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
10 axbtwnid 24447 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
x  Btwn  <. A ,  A >.  ->  x  =  A ) )
117, 8, 9, 10syl3anc 1226 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. A ,  A >.  ->  x  =  A ) )
12 simplr2 1037 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
13 axbtwnid 24447 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  (
x  Btwn  <. B ,  B >.  ->  x  =  B ) )
147, 8, 12, 13syl3anc 1226 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. B ,  B >.  ->  x  =  B ) )
1511, 14anim12d 561 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  ( x  =  A  /\  x  =  B ) ) )
16 eqtr2 2481 . . . 4  |-  ( ( x  =  A  /\  x  =  B )  ->  A  =  B )
1715, 16syl6 33 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  A  =  B ) )
1817rexlimdva 2946 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  A  =  B ) )
196, 18syld 44 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805   <.cop 4022   class class class wbr 4439   ` cfv 5570   NNcn 10531   EEcee 24396    Btwn cbtwn 24397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-z 10861  df-uz 11083  df-icc 11539  df-fz 11676  df-ee 24399  df-btwn 24400
This theorem is referenced by:  btwnswapid2  29899  segleantisym  29996  broutsideof2  30003
  Copyright terms: Public domain W3C validator