Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem8 Structured version   Unicode version

Theorem btwnconn1lem8 28270
Description: Lemma for btwnconn1 28277. Now, we introduce the last three points used in the construction:  P,  Q, and  R will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of  R P and  E d (Contributed by Scott Fenton, 8-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. R ,  P >.Cgr
<. E ,  d >.
)

Proof of Theorem btwnconn1lem8
StepHypRef Expression
1 simpr2l 1047 . . . 4  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  C  Btwn  <. d ,  R >. )
21ad2antll 728 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. d ,  R >. )
3 simpr1r 1046 . . . . . 6  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  <. C ,  P >.Cgr <. C ,  d
>. )
43ad2antll 728 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. C ,  P >.Cgr
<. C ,  d >.
)
5 simp11 1018 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  N  e.  NN )
6 simp2l1 1087 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
7 simp31 1024 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  P  e.  ( EE `  N
) )
8 simp2r1 1090 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  d  e.  ( EE `  N
) )
9 cgrcomlr 28174 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d
>. 
<-> 
<. P ,  C >.Cgr <.
d ,  C >. ) )
105, 6, 7, 6, 8, 9syl122anc 1228 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d >.  <->  <. P ,  C >.Cgr <. d ,  C >. ) )
11 cgrcom 28166 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. P ,  C >.Cgr <.
d ,  C >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
125, 7, 6, 8, 6, 11syl122anc 1228 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. P ,  C >.Cgr <.
d ,  C >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
1310, 12bitrd 253 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
1413adantr 465 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d
>. 
<-> 
<. d ,  C >.Cgr <. P ,  C >. ) )
154, 14mpbid 210 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  C >.Cgr
<. P ,  C >. )
16 simp33 1026 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  R  e.  ( EE `  N
) )
17 simp2r3 1092 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
18 simp2l3 1089 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  c  e.  ( EE `  N
) )
19 simpr1l 1045 . . . . . . . 8  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  C  Btwn  <. c ,  P >. )
2019ad2antll 728 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. c ,  P >. )
215, 6, 18, 7, 20btwncomand 28191 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. P , 
c >. )
22 simprll 761 . . . . . . 7  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  ->  E  Btwn  <. C ,  c
>. )
2322adantl 466 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  E  Btwn  <. C , 
c >. )
24 btwnintr 28195 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. P ,  c
>.  /\  E  Btwn  <. C , 
c >. )  ->  C  Btwn  <. P ,  E >. ) )
255, 7, 6, 17, 18, 24syl122anc 1228 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. P , 
c >.  /\  E  Btwn  <. C ,  c >. )  ->  C  Btwn  <. P ,  E >. ) )
2625adantr 465 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( ( C 
Btwn  <. P ,  c
>.  /\  E  Btwn  <. C , 
c >. )  ->  C  Btwn  <. P ,  E >. ) )
2721, 23, 26mp2and 679 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. P ,  E >. )
28 simpr2r 1048 . . . . . 6  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  <. C ,  R >.Cgr <. C ,  E >. )
2928ad2antll 728 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. C ,  R >.Cgr
<. C ,  E >. )
305, 8, 6, 16, 7, 6, 17, 2, 27, 15, 29cgrextendand 28185 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  R >.Cgr
<. P ,  E >. )
31 brcgr3 28222 . . . . . 6  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
325, 8, 6, 16, 7, 6, 17, 31syl133anc 1242 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
3332adantr 465 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
3415, 30, 29, 33mpbir3and 1171 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.
)
355, 8, 7cgrrflx2d 28160 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  <. d ,  P >.Cgr <. P ,  d
>. )
3635adantr 465 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  P >.Cgr
<. P ,  d >.
)
3736, 4jca 532 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. d ,  P >.Cgr <. P ,  d
>.  /\  <. C ,  P >.Cgr
<. C ,  d >.
) )
382, 34, 373jca 1168 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) ) )
39 simp1 988 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
40 simp2l 1014 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) ) )
41 simp2r 1015 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )
4239, 40, 413jca 1168 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) ) )
43 simpl 457 . . . . 5  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
44 simprl 755 . . . . 5  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )
4543, 44jca 532 . . . 4  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )
46 btwnconn1lem7 28269 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  (
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )  ->  C  =/=  d )
4742, 45, 46syl2an 477 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  =/=  d
)
4847necomd 2723 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  d  =/=  C
)
49 brofs2 28253 . . . . . 6  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  ( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >. 
<->  ( C  Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) ) ) )
5049anbi1d 704 . . . . 5  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >.  /\  d  =/=  C )  <->  ( ( C 
Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr
<. P ,  d >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
) )  /\  d  =/=  C ) ) )
51 5segofs 28182 . . . . 5  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >.  /\  d  =/=  C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5250, 51sylbird 235 . . . 4  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
535, 8, 6, 16, 7, 7, 6, 17, 8, 52syl333anc 1251 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5453adantr 465 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( ( ( C  Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5538, 48, 54mp2and 679 1  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. R ,  P >.Cgr
<. E ,  d >.
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1758    =/= wne 2648   <.cop 3992   class class class wbr 4401   ` cfv 5527   NNcn 10434   EEcee 23287    Btwn cbtwn 23288  Cgrccgr 23289    OuterFiveSeg cofs 28158  Cgr3ccgr3 28212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-ico 11418  df-icc 11419  df-fz 11556  df-fzo 11667  df-seq 11925  df-exp 11984  df-hash 12222  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-clim 13085  df-sum 13283  df-ee 23290  df-btwn 23291  df-cgr 23292  df-ofs 28159  df-ifs 28216  df-cgr3 28217
This theorem is referenced by:  btwnconn1lem9  28271  btwnconn1lem10  28272  btwnconn1lem11  28273
  Copyright terms: Public domain W3C validator