Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem13 Structured version   Unicode version

Theorem btwnconn1lem13 30424
Description: Lemma for btwnconn1 30426. Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =  c  \/  D  =  d ) )

Proof of Theorem btwnconn1lem13
Dummy variables  e  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2600 . . 3  |-  ( C  =/=  c  <->  -.  C  =  c )
2 simp2rl 1066 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  C  Btwn  <. A ,  d
>. )
32adantr 463 . . . . . . . . 9  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  ->  C  Btwn  <. A ,  d
>. )
4 simp2ll 1064 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  D  Btwn  <. A ,  c
>. )
54adantr 463 . . . . . . . . 9  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  ->  D  Btwn  <. A ,  c
>. )
63, 5jca 530 . . . . . . . 8  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( C  Btwn  <. A , 
d >.  /\  D  Btwn  <. A ,  c >. ) )
7 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  N  e.  NN )
8 simprl1 1042 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  C  e.  ( EE `  N ) )
9 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
10 simprrl 766 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  d  e.  ( EE `  N ) )
11 btwncom 30339 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A , 
d >. 
<->  C  Btwn  <. d ,  A >. ) )
127, 8, 9, 10, 11syl13anc 1232 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( C  Btwn  <. A ,  d >.  <->  C  Btwn  <. d ,  A >. ) )
13 simprl2 1043 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  D  e.  ( EE `  N ) )
14 simprl3 1044 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  c  e.  ( EE `  N ) )
15 btwncom 30339 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. A , 
c >. 
<->  D  Btwn  <. c ,  A >. ) )
167, 13, 9, 14, 15syl13anc 1232 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( D  Btwn  <. A ,  c >.  <->  D  Btwn  <. c ,  A >. ) )
1712, 16anbi12d 709 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  d
>.  /\  D  Btwn  <. A , 
c >. )  <->  ( C  Btwn  <. d ,  A >.  /\  D  Btwn  <. c ,  A >. ) ) )
186, 17syl5ib 219 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( C  Btwn  <. d ,  A >.  /\  D  Btwn  <.
c ,  A >. ) ) )
19 axpasch 24648 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  c  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <.
d ,  A >.  /\  D  Btwn  <. c ,  A >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. ) ) )
207, 10, 14, 9, 8, 13, 19syl132anc 1248 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. d ,  A >.  /\  D  Btwn  <. c ,  A >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. ) ) )
2118, 20syld 42 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )
2221imp 427 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c ) )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )
23 simpll1 1036 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  N  e.  NN )
2414adantr 463 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
258adantr 463 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  C  e.  ( EE `  N
) )
2610adantr 463 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  d  e.  ( EE `  N
) )
27 axsegcon 24634 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( c  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  ->  E. p  e.  ( EE `  N ) ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. ) )
2823, 24, 25, 25, 26, 27syl122anc 1239 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  E. p  e.  ( EE `  N
) ( C  Btwn  <.
c ,  p >.  /\ 
<. C ,  p >.Cgr <. C ,  d >. ) )
29 simpr 459 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  e  e.  ( EE `  N
) )
30 axsegcon 24634 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  e  e.  ( EE `  N
) ) )  ->  E. r  e.  ( EE `  N ) ( C  Btwn  <. d ,  r >.  /\  <. C , 
r >.Cgr <. C ,  e
>. ) )
3123, 26, 25, 25, 29, 30syl122anc 1239 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  E. r  e.  ( EE `  N
) ( C  Btwn  <.
d ,  r >.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )
32 reeanv 2974 . . . . . . . . 9  |-  ( E. p  e.  ( EE
`  N ) E. r  e.  ( EE
`  N ) ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )  <->  ( E. p  e.  ( EE `  N ) ( C 
Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr
<. C ,  d >.
)  /\  E. r  e.  ( EE `  N
) ( C  Btwn  <.
d ,  r >.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )
3328, 31, 32sylanbrc 662 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  E. p  e.  ( EE `  N
) E. r  e.  ( EE `  N
) ( ( C 
Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )
3433adantr 463 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  E. p  e.  ( EE `  N
) E. r  e.  ( EE `  N
) ( ( C 
Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )
357ad2antrr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  N  e.  NN )
36 simprl 756 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  p  e.  ( EE `  N ) )
37 simprr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  r  e.  ( EE `  N ) )
38 axsegcon 24634 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  /\  ( r  e.  ( EE `  N )  /\  p  e.  ( EE `  N ) ) )  ->  E. q  e.  ( EE `  N
) ( r  Btwn  <.
p ,  q >.  /\  <. r ,  q
>.Cgr <. r ,  p >. ) )
3935, 36, 37, 37, 36, 38syl122anc 1239 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  E. q  e.  ( EE `  N ) ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )
4039adantr 463 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  ->  E. q  e.  ( EE `  N ) ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )
41 simp-4l 768 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) ) )
42 simplrl 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) ) )
4342ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) ) )
4410ad3antrrr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
d  e.  ( EE
`  N ) )
45 simprrr 767 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  b  e.  ( EE `  N ) )
4645ad3antrrr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
b  e.  ( EE
`  N ) )
47 simpllr 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
e  e.  ( EE
`  N ) )
4844, 46, 473jca 1177 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )
4943, 48jca 530 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  e  e.  ( EE `  N ) ) ) )
50 simplrl 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  ->  p  e.  ( EE `  N ) )
51 simpr 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
q  e.  ( EE
`  N ) )
52 simplrr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
r  e.  ( EE
`  N ) )
5350, 51, 523jca 1177 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( p  e.  ( EE `  N )  /\  q  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) ) )
5441, 49, 533jca 1177 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  e  e.  ( EE `  N
) ) )  /\  ( p  e.  ( EE `  N )  /\  q  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) ) )
55 simp1ll 1060 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  A  =/=  B )
5655ad3antrrr 728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  ->  A  =/=  B )
5756adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  ->  A  =/=  B )
58 simp1lr 1061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  B  =/=  C )
5958ad3antrrr 728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  ->  B  =/=  C )
6059adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  ->  B  =/=  C )
61 simpllr 761 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  ->  C  =/=  c )
6261adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  ->  C  =/=  c )
6357, 60, 623jca 1177 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c
) )
64 simpl1r 1049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )
6564ad3antrrr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )
6663, 65jca 530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  c
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )
67 simpll2 1037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  ->  ( ( D  Btwn  <. A ,  c
>.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) )
6867ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )
69 simpl3l 1052 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. ) )
7069ad3antrrr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. ) )
71 simpl3r 1053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( d  Btwn  <. A , 
b >.  /\  <. d ,  b >.Cgr <. D ,  B >. ) )
7271ad3antrrr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( d  Btwn  <. A , 
b >.  /\  <. d ,  b >.Cgr <. D ,  B >. ) )
7370, 72jca 530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  b >.  /\ 
<. d ,  b >.Cgr <. D ,  B >. ) ) )
7466, 68, 733jca 1177 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
75 simpllr 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )
76 simplrl 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. ) )
77 simplrr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( C  Btwn  <. d ,  r >.  /\  <. C ,  r >.Cgr <. C , 
e >. ) )
78 simpr 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )
7976, 77, 783jca 1177 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( C  Btwn  <.
c ,  p >.  /\ 
<. C ,  p >.Cgr <. C ,  d >. )  /\  ( C  Btwn  <.
d ,  r >.  /\  <. C ,  r
>.Cgr <. C ,  e
>. )  /\  (
r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) )
8074, 75, 79jca32 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. )  /\  (
r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) ) ) )
81 btwnconn1lem12 30423 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  e  e.  ( EE `  N
) ) )  /\  ( p  e.  ( EE `  N )  /\  q  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. )  /\  (
r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) ) ) )  ->  D  =  d )
8254, 80, 81syl2an 475 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  /\  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) )  ->  D  =  d )
8382an4s 827 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  /\  ( q  e.  ( EE `  N
)  /\  ( r  Btwn  <. p ,  q
>.  /\  <. r ,  q
>.Cgr <. r ,  p >. ) ) )  ->  D  =  d )
8440, 83rexlimddv 2899 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  ->  D  =  d )
8584an4s 827 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  /\  (
( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  ->  D  =  d )
8685exp32 603 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  (
( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  ->  ( (
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )  ->  D  =  d ) ) )
8786rexlimdvv 2901 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  ( E. p  e.  ( EE `  N ) E. r  e.  ( EE
`  N ) ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )  ->  D  =  d ) )
8834, 87mpd 15 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  D  =  d )
8988an4s 827 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c ) )  /\  ( e  e.  ( EE `  N
)  /\  ( e  Btwn  <. C ,  c
>.  /\  e  Btwn  <. D , 
d >. ) ) )  ->  D  =  d )
9022, 89rexlimddv 2899 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c ) )  ->  D  =  d )
9190expr 613 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =/=  c  ->  D  =  d ) )
921, 91syl5bir 218 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( -.  C  =  c  ->  D  =  d ) )
9392orrd 376 1  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =  c  \/  D  =  d ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2754   <.cop 3977   class class class wbr 4394   ` cfv 5568   NNcn 10575   EEcee 24595    Btwn cbtwn 24596  Cgrccgr 24597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-sup 7934  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-rp 11265  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-sum 13656  df-ee 24598  df-btwn 24599  df-cgr 24600  df-ofs 30308  df-colinear 30364  df-ifs 30365  df-cgr3 30366  df-fs 30367
This theorem is referenced by:  btwnconn1lem14  30425
  Copyright terms: Public domain W3C validator