MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom Structured version   Unicode version

Theorem brwdom 7991
Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom  |-  ( Y  e.  V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
Distinct variable groups:    z, X    z, Y
Allowed substitution hint:    V( z)

Proof of Theorem brwdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3102 . 2  |-  ( Y  e.  V  ->  Y  e.  _V )
2 relwdom 7990 . . . . 5  |-  Rel  ~<_*
32brrelexi 5026 . . . 4  |-  ( X  ~<_*  Y  ->  X  e.  _V )
43a1i 11 . . 3  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  ->  X  e.  _V ) )
5 0ex 4563 . . . . . 6  |-  (/)  e.  _V
6 eleq1a 2524 . . . . . 6  |-  ( (/)  e.  _V  ->  ( X  =  (/)  ->  X  e.  _V ) )
75, 6ax-mp 5 . . . . 5  |-  ( X  =  (/)  ->  X  e. 
_V )
8 forn 5784 . . . . . . 7  |-  ( z : Y -onto-> X  ->  ran  z  =  X
)
9 vex 3096 . . . . . . . 8  |-  z  e. 
_V
109rnex 6715 . . . . . . 7  |-  ran  z  e.  _V
118, 10syl6eqelr 2538 . . . . . 6  |-  ( z : Y -onto-> X  ->  X  e.  _V )
1211exlimiv 1707 . . . . 5  |-  ( E. z  z : Y -onto-> X  ->  X  e.  _V )
137, 12jaoi 379 . . . 4  |-  ( ( X  =  (/)  \/  E. z  z : Y -onto-> X )  ->  X  e.  _V )
1413a1i 11 . . 3  |-  ( Y  e.  _V  ->  (
( X  =  (/)  \/ 
E. z  z : Y -onto-> X )  ->  X  e.  _V ) )
15 eqeq1 2445 . . . . . 6  |-  ( x  =  X  ->  (
x  =  (/)  <->  X  =  (/) ) )
16 foeq3 5779 . . . . . . 7  |-  ( x  =  X  ->  (
z : y -onto-> x  <-> 
z : y -onto-> X ) )
1716exbidv 1699 . . . . . 6  |-  ( x  =  X  ->  ( E. z  z :
y -onto-> x  <->  E. z  z : y -onto-> X ) )
1815, 17orbi12d 709 . . . . 5  |-  ( x  =  X  ->  (
( x  =  (/)  \/ 
E. z  z : y -onto-> x )  <->  ( X  =  (/)  \/  E. z 
z : y -onto-> X ) ) )
19 foeq2 5778 . . . . . . 7  |-  ( y  =  Y  ->  (
z : y -onto-> X  <-> 
z : Y -onto-> X
) )
2019exbidv 1699 . . . . . 6  |-  ( y  =  Y  ->  ( E. z  z :
y -onto-> X  <->  E. z  z : Y -onto-> X ) )
2120orbi2d 701 . . . . 5  |-  ( y  =  Y  ->  (
( X  =  (/)  \/ 
E. z  z : y -onto-> X )  <->  ( X  =  (/)  \/  E. z 
z : Y -onto-> X
) ) )
22 df-wdom 7983 . . . . 5  |-  ~<_*  =  { <. x ,  y >.  |  ( x  =  (/)  \/  E. z  z : y
-onto-> x ) }
2318, 21, 22brabg 4752 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
2423expcom 435 . . 3  |-  ( Y  e.  _V  ->  ( X  e.  _V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) ) )
254, 14, 24pm5.21ndd 354 . 2  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
261, 25syl 16 1  |-  ( Y  e.  V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1381   E.wex 1597    e. wcel 1802   _Vcvv 3093   (/)c0 3767   class class class wbr 4433   ran crn 4986   -onto->wfo 5572    ~<_* cwdom 7981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-xp 4991  df-rel 4992  df-cnv 4993  df-dm 4995  df-rn 4996  df-fn 5577  df-fo 5580  df-wdom 7983
This theorem is referenced by:  brwdomi  7992  brwdomn0  7993  0wdom  7994  fowdom  7995  domwdom  7998  wdomnumr  8443
  Copyright terms: Public domain W3C validator