Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Unicode version

Theorem brtxp 30473
Description: Characterize a trinary relationship over a tail Cartesian product. Together with txpss3v 30471, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypotheses
Ref Expression
brtxp.1  |-  X  e. 
_V
brtxp.2  |-  Y  e. 
_V
brtxp.3  |-  Z  e. 
_V
Assertion
Ref Expression
brtxp  |-  ( X ( A  (x)  B
) <. Y ,  Z >.  <-> 
( X A Y  /\  X B Z ) )

Proof of Theorem brtxp
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 30446 . . 3  |-  ( A 
(x)  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
21breqi 4423 . 2  |-  ( X ( A  (x)  B
) <. Y ,  Z >.  <-> 
X ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) ) <. Y ,  Z >. )
3 brin 4466 . 2  |-  ( X ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
<. Y ,  Z >.  <->  ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A ) <. Y ,  Z >.  /\  X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) <. Y ,  Z >. ) )
4 brtxp.1 . . . . 5  |-  X  e. 
_V
5 opex 4677 . . . . 5  |-  <. Y ,  Z >.  e.  _V
64, 5brco 5016 . . . 4  |-  ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
) <. Y ,  Z >.  <->  E. y ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. ) )
7 ancom 451 . . . . . 6  |-  ( ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( y `' ( 1st  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X A y ) )
8 vex 3081 . . . . . . . . 9  |-  y  e. 
_V
98, 5brcnv 5028 . . . . . . . 8  |-  ( y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  <. Y ,  Z >. ( 1st  |`  ( _V  X.  _V ) ) y )
10 brtxp.2 . . . . . . . . . 10  |-  Y  e. 
_V
11 brtxp.3 . . . . . . . . . 10  |-  Z  e. 
_V
1210, 11opelvv 4892 . . . . . . . . 9  |-  <. Y ,  Z >.  e.  ( _V 
X.  _V )
138brres 5122 . . . . . . . . 9  |-  ( <. Y ,  Z >. ( 1st  |`  ( _V  X.  _V ) ) y  <-> 
( <. Y ,  Z >. 1st y  /\  <. Y ,  Z >.  e.  ( _V  X.  _V )
) )
1412, 13mpbiran2 927 . . . . . . . 8  |-  ( <. Y ,  Z >. ( 1st  |`  ( _V  X.  _V ) ) y  <->  <. Y ,  Z >. 1st y )
1510, 11, 8br1steq 30242 . . . . . . . 8  |-  ( <. Y ,  Z >. 1st y  <->  y  =  Y )
169, 14, 153bitri 274 . . . . . . 7  |-  ( y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  y  =  Y )
1716anbi1i 699 . . . . . 6  |-  ( ( y `' ( 1st  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X A
y )  <->  ( y  =  Y  /\  X A y ) )
187, 17bitri 252 . . . . 5  |-  ( ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( y  =  Y  /\  X A y ) )
1918exbii 1712 . . . 4  |-  ( E. y ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <->  E. y ( y  =  Y  /\  X A y ) )
20 breq2 4421 . . . . 5  |-  ( y  =  Y  ->  ( X A y  <->  X A Y ) )
2110, 20ceqsexv 3115 . . . 4  |-  ( E. y ( y  =  Y  /\  X A y )  <->  X A Y )
226, 19, 213bitri 274 . . 3  |-  ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
) <. Y ,  Z >.  <-> 
X A Y )
234, 5brco 5016 . . . 4  |-  ( X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) <. Y ,  Z >.  <->  E. z ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. ) )
24 ancom 451 . . . . . 6  |-  ( ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( z `' ( 2nd  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X B z ) )
25 vex 3081 . . . . . . . . 9  |-  z  e. 
_V
2625, 5brcnv 5028 . . . . . . . 8  |-  ( z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  <. Y ,  Z >. ( 2nd  |`  ( _V  X.  _V ) ) z )
2725brres 5122 . . . . . . . . 9  |-  ( <. Y ,  Z >. ( 2nd  |`  ( _V  X.  _V ) ) z  <-> 
( <. Y ,  Z >. 2nd z  /\  <. Y ,  Z >.  e.  ( _V  X.  _V )
) )
2812, 27mpbiran2 927 . . . . . . . 8  |-  ( <. Y ,  Z >. ( 2nd  |`  ( _V  X.  _V ) ) z  <->  <. Y ,  Z >. 2nd z )
2910, 11, 25br2ndeq 30243 . . . . . . . 8  |-  ( <. Y ,  Z >. 2nd z  <->  z  =  Z )
3026, 28, 293bitri 274 . . . . . . 7  |-  ( z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  z  =  Z )
3130anbi1i 699 . . . . . 6  |-  ( ( z `' ( 2nd  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X B
z )  <->  ( z  =  Z  /\  X B z ) )
3224, 31bitri 252 . . . . 5  |-  ( ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( z  =  Z  /\  X B z ) )
3332exbii 1712 . . . 4  |-  ( E. z ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <->  E. z ( z  =  Z  /\  X B z ) )
34 breq2 4421 . . . . 5  |-  ( z  =  Z  ->  ( X B z  <->  X B Z ) )
3511, 34ceqsexv 3115 . . . 4  |-  ( E. z ( z  =  Z  /\  X B z )  <->  X B Z )
3623, 33, 353bitri 274 . . 3  |-  ( X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) <. Y ,  Z >.  <-> 
X B Z )
3722, 36anbi12i 701 . 2  |-  ( ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A ) <. Y ,  Z >.  /\  X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) <. Y ,  Z >. )  <-> 
( X A Y  /\  X B Z ) )
382, 3, 373bitri 274 1  |-  ( X ( A  (x)  B
) <. Y ,  Z >.  <-> 
( X A Y  /\  X B Z ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1867   _Vcvv 3078    i^i cin 3432   <.cop 3999   class class class wbr 4417    X. cxp 4843   `'ccnv 4844    |` cres 4847    o. ccom 4849   1stc1st 6796   2ndc2nd 6797    (x) ctxp 30422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-fo 5598  df-fv 5600  df-1st 6798  df-2nd 6799  df-txp 30446
This theorem is referenced by:  brtxp2  30474  pprodss4v  30477  brpprod  30478  brsset  30482  brtxpsd  30487  elfuns  30508
  Copyright terms: Public domain W3C validator