MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos2 Structured version   Unicode version

Theorem brtpos2 6750
Description: Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )

Proof of Theorem brtpos2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6749 . . . 4  |-  Rel tpos  F
21brrelexi 4875 . . 3  |-  ( Atpos 
F B  ->  A  e.  _V )
32a1i 11 . 2  |-  ( B  e.  V  ->  ( Atpos  F B  ->  A  e.  _V ) )
4 elex 2979 . . . 4  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  A  e.  _V )
54adantr 462 . . 3  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V )
65a1i 11 . 2  |-  ( B  e.  V  ->  (
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V ) )
7 df-tpos 6744 . . . . . 6  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
87breqi 4295 . . . . 5  |-  ( Atpos 
F B  <->  A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B )
9 brcog 5002 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B  <->  E. y
( A ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) y  /\  y F B ) ) )
108, 9syl5bb 257 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <->  E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B ) ) )
11 funmpt 5451 . . . . . . . . . . 11  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
12 funbrfv2b 5733 . . . . . . . . . . 11  |-  ( Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  ->  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) ) )
1311, 12ax-mp 5 . . . . . . . . . 10  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) )
14 snex 4530 . . . . . . . . . . . . . . . 16  |-  { x }  e.  _V
1514cnvex 6524 . . . . . . . . . . . . . . 15  |-  `' {
x }  e.  _V
1615uniex 6375 . . . . . . . . . . . . . 14  |-  U. `' { x }  e.  _V
17 eqid 2441 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
1816, 17dmmpti 5537 . . . . . . . . . . . . 13  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  =  ( `' dom  F  u.  { (/) } )
1918eleq2i 2505 . . . . . . . . . . . 12  |-  ( A  e.  dom  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
20 eqcom 2443 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  =  y  <->  y  =  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A ) )
2119, 20anbi12i 692 . . . . . . . . . . 11  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) ) )
22 sneq 3884 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  { x }  =  { A } )
2322cnveqd 5011 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  `' { x }  =  `' { A } )
2423unieqd 4098 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  U. `' { x }  =  U. `' { A } )
25 snex 4530 . . . . . . . . . . . . . . . 16  |-  { A }  e.  _V
2625cnvex 6524 . . . . . . . . . . . . . . 15  |-  `' { A }  e.  _V
2726uniex 6375 . . . . . . . . . . . . . 14  |-  U. `' { A }  e.  _V
2824, 17, 27fvmpt 5771 . . . . . . . . . . . . 13  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  U. `' { A } )
2928eqeq2d 2452 . . . . . . . . . . . 12  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) `
 A )  <->  y  =  U. `' { A } ) )
3029pm5.32i 632 . . . . . . . . . . 11  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
3121, 30bitri 249 . . . . . . . . . 10  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } ) )
3213, 31bitri 249 . . . . . . . . 9  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
33 ancom 448 . . . . . . . . 9  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } )  <->  ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3432, 33bitri 249 . . . . . . . 8  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( y  = 
U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3534anbi1i 690 . . . . . . 7  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( (
y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B ) )
36 anass 644 . . . . . . 7  |-  ( ( ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
3735, 36bitri 249 . . . . . 6  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
3837exbii 1639 . . . . 5  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) ) )
39 breq1 4292 . . . . . . 7  |-  ( y  =  U. `' { A }  ->  ( y F B  <->  U. `' { A } F B ) )
4039anbi2d 698 . . . . . 6  |-  ( y  =  U. `' { A }  ->  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
4127, 40ceqsexv 3006 . . . . 5  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) )
4238, 41bitri 249 . . . 4  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) )
4310, 42syl6bb 261 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) ) )
4443expcom 435 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) ) )
453, 6, 44pm5.21ndd 354 1  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   _Vcvv 2970    u. cun 3323   (/)c0 3634   {csn 3874   U.cuni 4088   class class class wbr 4289    e. cmpt 4347   `'ccnv 4835   dom cdm 4836    o. ccom 4840   Fun wfun 5409   ` cfv 5415  tpos ctpos 6743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-fv 5423  df-tpos 6744
This theorem is referenced by:  brtpos0  6751  reldmtpos  6752  brtpos  6753  dftpos4  6763  tpostpos  6764
  Copyright terms: Public domain W3C validator