MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos Structured version   Unicode version

Theorem brtpos 6961
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos  |-  ( C  e.  V  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )

Proof of Theorem brtpos
StepHypRef Expression
1 brtpos2 6958 . . . . 5  |-  ( C  e.  V  ->  ( <. A ,  B >.tpos  F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C ) ) )
21adantr 465 . . . 4  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. A ,  B >.tpos  F C  <-> 
( <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { <. A ,  B >. } F C ) ) )
3 opex 4711 . . . . . . . . . 10  |-  <. B ,  A >.  e.  _V
4 breldmg 5206 . . . . . . . . . . 11  |-  ( (
<. B ,  A >.  e. 
_V  /\  C  e.  V  /\  <. B ,  A >. F C )  ->  <. B ,  A >.  e. 
dom  F )
543expia 1198 . . . . . . . . . 10  |-  ( (
<. B ,  A >.  e. 
_V  /\  C  e.  V )  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F
) )
63, 5mpan 670 . . . . . . . . 9  |-  ( C  e.  V  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F
) )
76adantr 465 . . . . . . . 8  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F ) )
8 opelcnvg 5180 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  `' dom  F  <->  <. B ,  A >.  e. 
dom  F ) )
98adantl 466 . . . . . . . 8  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. A ,  B >.  e.  `' dom  F  <->  <. B ,  A >.  e.  dom  F ) )
107, 9sylibrd 234 . . . . . . 7  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. B ,  A >. F C  ->  <. A ,  B >.  e.  `' dom  F
) )
11 elun1 3671 . . . . . . 7  |-  ( <. A ,  B >.  e.  `' dom  F  ->  <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} ) )
1210, 11syl6 33 . . . . . 6  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. B ,  A >. F C  ->  <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } ) ) )
1312pm4.71rd 635 . . . . 5  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. B ,  A >. F C  <-> 
( <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  <. B ,  A >. F C ) ) )
14 opswap 5493 . . . . . . 7  |-  U. `' { <. A ,  B >. }  =  <. B ,  A >.
1514breq1i 4454 . . . . . 6  |-  ( U. `' { <. A ,  B >. } F C  <->  <. B ,  A >. F C )
1615anbi2i 694 . . . . 5  |-  ( (
<. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { <. A ,  B >. } F C )  <-> 
( <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  <. B ,  A >. F C ) )
1713, 16syl6bbr 263 . . . 4  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. B ,  A >. F C  <-> 
( <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { <. A ,  B >. } F C ) ) )
182, 17bitr4d 256 . . 3  |-  ( ( C  e.  V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
1918ex 434 . 2  |-  ( C  e.  V  ->  (
( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) ) )
20 brtpos0 6959 . . 3  |-  ( C  e.  V  ->  ( (/)tpos  F C  <->  (/) F C ) )
21 opprc 4235 . . . . 5  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
2221breq1d 4457 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.tpos  F C  <->  (/)tpos  F C ) )
23 ancom 450 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( B  e.  _V  /\  A  e.  _V )
)
24 opprc 4235 . . . . . 6  |-  ( -.  ( B  e.  _V  /\  A  e.  _V )  -> 
<. B ,  A >.  =  (/) )
2524breq1d 4457 . . . . 5  |-  ( -.  ( B  e.  _V  /\  A  e.  _V )  ->  ( <. B ,  A >. F C  <->  (/) F C ) )
2623, 25sylnbi 306 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( <. B ,  A >. F C  <->  (/) F C ) )
2722, 26bibi12d 321 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C )  <-> 
( (/)tpos  F C  <->  (/) F C ) ) )
2820, 27syl5ibrcom 222 . 2  |-  ( C  e.  V  ->  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) ) )
2919, 28pm2.61d 158 1  |-  ( C  e.  V  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   _Vcvv 3113    u. cun 3474   (/)c0 3785   {csn 4027   <.cop 4033   U.cuni 4245   class class class wbr 4447   `'ccnv 4998   dom cdm 4999  tpos ctpos 6951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594  df-tpos 6952
This theorem is referenced by:  ottpos  6962  relbrtpos  6963  dmtpos  6964  rntpos  6965  ovtpos  6967  dftpos3  6970  tpostpos  6972
  Copyright terms: Public domain W3C validator