Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Structured version   Unicode version

Theorem brsset 30649
Description: For sets, the  SSet binary relationship is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1  |-  B  e. 
_V
Assertion
Ref Expression
brsset  |-  ( A
SSet B  <->  A  C_  B )

Proof of Theorem brsset
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 30648 . . 3  |-  Rel  SSet
21brrelexi 4891 . 2  |-  ( A
SSet B  ->  A  e. 
_V )
3 brsset.1 . . 3  |-  B  e. 
_V
43ssex 4565 . 2  |-  ( A 
C_  B  ->  A  e.  _V )
5 breq1 4423 . . 3  |-  ( x  =  A  ->  (
x SSet B  <->  A SSet B ) )
6 sseq1 3485 . . 3  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
7 opex 4682 . . . . . . 7  |-  <. x ,  B >.  e.  _V
87elrn 5091 . . . . . 6  |-  ( <.
x ,  B >.  e. 
ran  (  _E  (x)  ( _V  \  _E  )
)  <->  E. y  y (  _E  (x)  ( _V  \  _E  ) ) <.
x ,  B >. )
9 vex 3084 . . . . . . . . 9  |-  y  e. 
_V
10 vex 3084 . . . . . . . . 9  |-  x  e. 
_V
119, 10, 3brtxp 30640 . . . . . . . 8  |-  ( y (  _E  (x)  ( _V  \  _E  ) )
<. x ,  B >.  <->  (
y  _E  x  /\  y ( _V  \  _E  ) B ) )
12 epel 4764 . . . . . . . . 9  |-  ( y  _E  x  <->  y  e.  x )
13 brv 30637 . . . . . . . . . . 11  |-  y _V B
14 brdif 4471 . . . . . . . . . . 11  |-  ( y ( _V  \  _E  ) B  <->  ( y _V B  /\  -.  y  _E  B ) )
1513, 14mpbiran 926 . . . . . . . . . 10  |-  ( y ( _V  \  _E  ) B  <->  -.  y  _E  B )
163epelc 4763 . . . . . . . . . 10  |-  ( y  _E  B  <->  y  e.  B )
1715, 16xchbinx 311 . . . . . . . . 9  |-  ( y ( _V  \  _E  ) B  <->  -.  y  e.  B )
1812, 17anbi12i 701 . . . . . . . 8  |-  ( ( y  _E  x  /\  y ( _V  \  _E  ) B )  <->  ( y  e.  x  /\  -.  y  e.  B ) )
1911, 18bitri 252 . . . . . . 7  |-  ( y (  _E  (x)  ( _V  \  _E  ) )
<. x ,  B >.  <->  (
y  e.  x  /\  -.  y  e.  B
) )
2019exbii 1712 . . . . . 6  |-  ( E. y  y (  _E 
(x)  ( _V  \  _E  ) ) <. x ,  B >.  <->  E. y ( y  e.  x  /\  -.  y  e.  B )
)
21 exanali 1715 . . . . . 6  |-  ( E. y ( y  e.  x  /\  -.  y  e.  B )  <->  -.  A. y
( y  e.  x  ->  y  e.  B ) )
228, 20, 213bitrri 275 . . . . 5  |-  ( -. 
A. y ( y  e.  x  ->  y  e.  B )  <->  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
2322con1bii 332 . . . 4  |-  ( -. 
<. x ,  B >.  e. 
ran  (  _E  (x)  ( _V  \  _E  )
)  <->  A. y ( y  e.  x  ->  y  e.  B ) )
24 df-br 4421 . . . . 5  |-  ( x
SSet B  <->  <. x ,  B >.  e.  SSet )
25 df-sset 30615 . . . . . . 7  |-  SSet  =  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )
2625eleq2i 2500 . . . . . 6  |-  ( <.
x ,  B >.  e. 
SSet 
<-> 
<. x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) ) )
2710, 3opelvv 4897 . . . . . . 7  |-  <. x ,  B >.  e.  ( _V  X.  _V )
28 eldif 3446 . . . . . . 7  |-  ( <.
x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )  <->  ( <. x ,  B >.  e.  ( _V  X.  _V )  /\  -.  <. x ,  B >.  e.  ran  (  _E 
(x)  ( _V  \  _E  ) ) ) )
2927, 28mpbiran 926 . . . . . 6  |-  ( <.
x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )  <->  -.  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
3026, 29bitri 252 . . . . 5  |-  ( <.
x ,  B >.  e. 
SSet 
<->  -.  <. x ,  B >.  e.  ran  (  _E 
(x)  ( _V  \  _E  ) ) )
3124, 30bitri 252 . . . 4  |-  ( x
SSet B  <->  -.  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
32 dfss2 3453 . . . 4  |-  ( x 
C_  B  <->  A. y
( y  e.  x  ->  y  e.  B ) )
3323, 31, 323bitr4i 280 . . 3  |-  ( x
SSet B  <->  x  C_  B )
345, 6, 33vtoclbg 3140 . 2  |-  ( A  e.  _V  ->  ( A SSet B  <->  A  C_  B
) )
352, 4, 34pm5.21nii 354 1  |-  ( A
SSet B  <->  A  C_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435   E.wex 1659    e. wcel 1868   _Vcvv 3081    \ cdif 3433    C_ wss 3436   <.cop 4002   class class class wbr 4420    _E cep 4759    X. cxp 4848   ran crn 4851    (x) ctxp 30589   SSetcsset 30591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-mpt 4481  df-eprel 4761  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-fo 5604  df-fv 5606  df-1st 6804  df-2nd 6805  df-txp 30613  df-sset 30615
This theorem is referenced by:  idsset  30650  dfon3  30652  imagesset  30713
  Copyright terms: Public domain W3C validator