MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brssc Structured version   Unicode version

Theorem brssc 15305
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
brssc  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) ) )
Distinct variable groups:    t, s, x, H    J, s, t, x

Proof of Theorem brssc
Dummy variables  h  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscrel 15304 . . 3  |-  Rel  C_cat
2 brrelex12 5026 . . 3  |-  ( ( Rel  C_cat  /\  H  C_cat  J )  ->  ( H  e. 
_V  /\  J  e.  _V ) )
31, 2mpan 668 . 2  |-  ( H 
C_cat  J  ->  ( H  e.  _V  /\  J  e. 
_V ) )
4 vex 3109 . . . . . 6  |-  t  e. 
_V
54, 4xpex 6577 . . . . 5  |-  ( t  X.  t )  e. 
_V
6 fnex 6114 . . . . 5  |-  ( ( J  Fn  ( t  X.  t )  /\  ( t  X.  t
)  e.  _V )  ->  J  e.  _V )
75, 6mpan2 669 . . . 4  |-  ( J  Fn  ( t  X.  t )  ->  J  e.  _V )
8 elex 3115 . . . . 5  |-  ( H  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )  ->  H  e.  _V )
98rexlimivw 2943 . . . 4  |-  ( E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x )  ->  H  e.  _V )
107, 9anim12ci 565 . . 3  |-  ( ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) )  ->  ( H  e. 
_V  /\  J  e.  _V ) )
1110exlimiv 1727 . 2  |-  ( E. t ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) )  -> 
( H  e.  _V  /\  J  e.  _V )
)
12 simpr 459 . . . . . 6  |-  ( ( h  =  H  /\  j  =  J )  ->  j  =  J )
1312fneq1d 5653 . . . . 5  |-  ( ( h  =  H  /\  j  =  J )  ->  ( j  Fn  (
t  X.  t )  <-> 
J  Fn  ( t  X.  t ) ) )
14 simpl 455 . . . . . . 7  |-  ( ( h  =  H  /\  j  =  J )  ->  h  =  H )
1512fveq1d 5850 . . . . . . . . 9  |-  ( ( h  =  H  /\  j  =  J )  ->  ( j `  x
)  =  ( J `
 x ) )
1615pweqd 4004 . . . . . . . 8  |-  ( ( h  =  H  /\  j  =  J )  ->  ~P ( j `  x )  =  ~P ( J `  x ) )
1716ixpeq2dv 7478 . . . . . . 7  |-  ( ( h  =  H  /\  j  =  J )  -> 
X_ x  e.  ( s  X.  s ) ~P ( j `  x )  =  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
)
1814, 17eleq12d 2536 . . . . . 6  |-  ( ( h  =  H  /\  j  =  J )  ->  ( h  e.  X_ x  e.  ( s  X.  s ) ~P (
j `  x )  <->  H  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x ) ) )
1918rexbidv 2965 . . . . 5  |-  ( ( h  =  H  /\  j  =  J )  ->  ( E. s  e. 
~P  t h  e.  X_ x  e.  (
s  X.  s ) ~P ( j `  x )  <->  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) )
2013, 19anbi12d 708 . . . 4  |-  ( ( h  =  H  /\  j  =  J )  ->  ( ( j  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t h  e.  X_ x  e.  (
s  X.  s ) ~P ( j `  x ) )  <->  ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) ) )
2120exbidv 1719 . . 3  |-  ( ( h  =  H  /\  j  =  J )  ->  ( E. t ( j  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t
h  e.  X_ x  e.  ( s  X.  s
) ~P ( j `
 x ) )  <->  E. t ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) ) )
22 df-ssc 15301 . . 3  |-  C_cat  =  { <. h ,  j >.  |  E. t ( j  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t
h  e.  X_ x  e.  ( s  X.  s
) ~P ( j `
 x ) ) }
2321, 22brabga 4750 . 2  |-  ( ( H  e.  _V  /\  J  e.  _V )  ->  ( H  C_cat  J  <->  E. t
( J  Fn  (
t  X.  t )  /\  E. s  e. 
~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) ) )
243, 11, 23pm5.21nii 351 1  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   E.wrex 2805   _Vcvv 3106   ~Pcpw 3999   class class class wbr 4439    X. cxp 4986   Rel wrel 4993    Fn wfn 5565   ` cfv 5570   X_cixp 7462    C_cat cssc 15298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ixp 7463  df-ssc 15301
This theorem is referenced by:  sscpwex  15306  sscfn1  15308  sscfn2  15309  isssc  15311
  Copyright terms: Public domain W3C validator