MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom2 Structured version   Unicode version

Theorem brsdom2 7560
Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.)
Hypotheses
Ref Expression
brsdom2.1  |-  A  e. 
_V
brsdom2.2  |-  B  e. 
_V
Assertion
Ref Expression
brsdom2  |-  ( A 
~<  B  <->  ( A  ~<_  B  /\  -.  B  ~<_  A ) )

Proof of Theorem brsdom2
StepHypRef Expression
1 dfsdom2 7559 . . 3  |-  ~<  =  (  ~<_  \  `'  ~<_  )
21eleq2i 2460 . 2  |-  ( <. A ,  B >.  e. 
~< 
<-> 
<. A ,  B >.  e.  (  ~<_  \  `'  ~<_  ) )
3 df-br 4368 . 2  |-  ( A 
~<  B  <->  <. A ,  B >.  e.  ~<  )
4 df-br 4368 . . . 4  |-  ( A  ~<_  B  <->  <. A ,  B >.  e.  ~<_  )
5 df-br 4368 . . . . . 6  |-  ( B  ~<_  A  <->  <. B ,  A >.  e.  ~<_  )
6 brsdom2.1 . . . . . . 7  |-  A  e. 
_V
7 brsdom2.2 . . . . . . 7  |-  B  e. 
_V
86, 7opelcnv 5097 . . . . . 6  |-  ( <. A ,  B >.  e.  `' 
~<_ 
<-> 
<. B ,  A >.  e.  ~<_  )
95, 8bitr4i 252 . . . . 5  |-  ( B  ~<_  A  <->  <. A ,  B >.  e.  `'  ~<_  )
109notbii 294 . . . 4  |-  ( -.  B  ~<_  A  <->  -.  <. A ,  B >.  e.  `'  ~<_  )
114, 10anbi12i 695 . . 3  |-  ( ( A  ~<_  B  /\  -.  B  ~<_  A )  <->  ( <. A ,  B >.  e.  ~<_  /\  -.  <. A ,  B >.  e.  `' 
~<_  ) )
12 eldif 3399 . . 3  |-  ( <. A ,  B >.  e.  (  ~<_  \  `'  ~<_  )  <->  ( <. A ,  B >.  e.  ~<_  /\  -.  <. A ,  B >.  e.  `' 
~<_  ) )
1311, 12bitr4i 252 . 2  |-  ( ( A  ~<_  B  /\  -.  B  ~<_  A )  <->  <. A ,  B >.  e.  (  ~<_  \  `' 
~<_  ) )
142, 3, 133bitr4i 277 1  |-  ( A 
~<  B  <->  ( A  ~<_  B  /\  -.  B  ~<_  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 367    e. wcel 1826   _Vcvv 3034    \ cdif 3386   <.cop 3950   class class class wbr 4367   `'ccnv 4912    ~<_ cdom 7433    ~< csdm 7434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator