Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrestrict Structured version   Unicode version

Theorem brrestrict 29494
Description: The binary relationship form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brrestrict.1  |-  A  e. 
_V
brrestrict.2  |-  B  e. 
_V
brrestrict.3  |-  C  e. 
_V
Assertion
Ref Expression
brrestrict  |-  ( <. A ,  B >.Restrict C  <->  C  =  ( A  |`  B ) )

Proof of Theorem brrestrict
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4716 . . . . 5  |-  <. A ,  B >.  e.  _V
2 brrestrict.3 . . . . 5  |-  C  e. 
_V
31, 2brco 5178 . . . 4  |-  ( <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C  <->  E. x ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  /\  xCap C ) )
41brtxp2 29426 . . . . . . 7  |-  ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  <->  E. a E. b
( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b ) )
5 3anrot 978 . . . . . . . . 9  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b )  <-> 
( <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o. 
1st ) ) ) b  /\  x  = 
<. a ,  b >.
) )
6 brrestrict.1 . . . . . . . . . . 11  |-  A  e. 
_V
7 brrestrict.2 . . . . . . . . . . 11  |-  B  e. 
_V
8 vex 3121 . . . . . . . . . . 11  |-  a  e. 
_V
96, 7, 8br1steq 29099 . . . . . . . . . 10  |-  ( <. A ,  B >. 1st a  <->  a  =  A )
10 vex 3121 . . . . . . . . . . . 12  |-  b  e. 
_V
111, 10brco 5178 . . . . . . . . . . 11  |-  ( <. A ,  B >. (Cart 
o.  ( 2nd  (x)  (Range  o.  1st ) ) ) b  <->  E. x
( <. A ,  B >. ( 2nd  (x)  (Range  o. 
1st ) ) x  /\  xCart b ) )
121brtxp2 29426 . . . . . . . . . . . . . . 15  |-  ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  <->  E. a E. b ( x  = 
<. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o. 
1st ) b ) )
13 3anrot 978 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b )  <->  ( <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b  /\  x  =  <. a ,  b >.
) )
146, 7, 8br2ndeq 29100 . . . . . . . . . . . . . . . . . 18  |-  ( <. A ,  B >. 2nd a  <->  a  =  B )
151, 10brco 5178 . . . . . . . . . . . . . . . . . . 19  |-  ( <. A ,  B >. (Range 
o.  1st ) b  <->  E. x
( <. A ,  B >. 1st x  /\  xRange b ) )
16 vex 3121 . . . . . . . . . . . . . . . . . . . . . . 23  |-  x  e. 
_V
176, 7, 16br1steq 29099 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <. A ,  B >. 1st x  <->  x  =  A
)
1817anbi1i 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. A ,  B >. 1st x  /\  xRange b
)  <->  ( x  =  A  /\  xRange b
) )
1918exbii 1644 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. x ( <. A ,  B >. 1st x  /\  xRange b )  <->  E. x
( x  =  A  /\  xRange b ) )
20 breq1 4455 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  A  ->  (
xRange b  <->  ARange b
) )
216, 20ceqsexv 3155 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. x ( x  =  A  /\  xRange b
)  <->  ARange b )
2219, 21bitri 249 . . . . . . . . . . . . . . . . . . 19  |-  ( E. x ( <. A ,  B >. 1st x  /\  xRange b )  <->  ARange b
)
236, 10brrange 29479 . . . . . . . . . . . . . . . . . . 19  |-  ( ARange b  <->  b  =  ran  A )
2415, 22, 233bitri 271 . . . . . . . . . . . . . . . . . 18  |-  ( <. A ,  B >. (Range 
o.  1st ) b  <->  b  =  ran  A )
25 biid 236 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. a ,  b
>. 
<->  x  =  <. a ,  b >. )
2614, 24, 253anbi123i 1185 . . . . . . . . . . . . . . . . 17  |-  ( (
<. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st ) b  /\  x  =  <. a ,  b
>. )  <->  ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b
>. ) )
2713, 26bitri 249 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b )  <->  ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b
>. ) )
28272exbii 1645 . . . . . . . . . . . . . . 15  |-  ( E. a E. b ( x  =  <. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b )  <->  E. a E. b ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b
>. ) )
296rnex 6728 . . . . . . . . . . . . . . . 16  |-  ran  A  e.  _V
30 opeq1 4218 . . . . . . . . . . . . . . . . 17  |-  ( a  =  B  ->  <. a ,  b >.  =  <. B ,  b >. )
3130eqeq2d 2481 . . . . . . . . . . . . . . . 16  |-  ( a  =  B  ->  (
x  =  <. a ,  b >.  <->  x  =  <. B ,  b >.
) )
32 opeq2 4219 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ran  A  ->  <. B ,  b >.  =  <. B ,  ran  A
>. )
3332eqeq2d 2481 . . . . . . . . . . . . . . . 16  |-  ( b  =  ran  A  -> 
( x  =  <. B ,  b >.  <->  x  =  <. B ,  ran  A >. ) )
347, 29, 31, 33ceqsex2v 3157 . . . . . . . . . . . . . . 15  |-  ( E. a E. b ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b >. )  <->  x  =  <. B ,  ran  A >. )
3512, 28, 343bitri 271 . . . . . . . . . . . . . 14  |-  ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  <->  x  =  <. B ,  ran  A >. )
3635anbi1i 695 . . . . . . . . . . . . 13  |-  ( (
<. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  /\  xCart b )  <->  ( x  =  <. B ,  ran  A
>.  /\  xCart b ) )
3736exbii 1644 . . . . . . . . . . . 12  |-  ( E. x ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  /\  xCart b
)  <->  E. x ( x  =  <. B ,  ran  A
>.  /\  xCart b ) )
38 opex 4716 . . . . . . . . . . . . 13  |-  <. B ,  ran  A >.  e.  _V
39 breq1 4455 . . . . . . . . . . . . 13  |-  ( x  =  <. B ,  ran  A
>.  ->  ( xCart b  <->  <. B ,  ran  A >.Cart b ) )
4038, 39ceqsexv 3155 . . . . . . . . . . . 12  |-  ( E. x ( x  = 
<. B ,  ran  A >.  /\  xCart b )  <->  <. B ,  ran  A >.Cart b )
4137, 40bitri 249 . . . . . . . . . . 11  |-  ( E. x ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  /\  xCart b
)  <->  <. B ,  ran  A
>.Cart b )
427, 29, 10brcart 29477 . . . . . . . . . . 11  |-  ( <. B ,  ran  A >.Cart b  <-> 
b  =  ( B  X.  ran  A ) )
4311, 41, 423bitri 271 . . . . . . . . . 10  |-  ( <. A ,  B >. (Cart 
o.  ( 2nd  (x)  (Range  o.  1st ) ) ) b  <->  b  =  ( B  X.  ran  A
) )
449, 43, 253anbi123i 1185 . . . . . . . . 9  |-  ( (
<. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) b  /\  x  =  <. a ,  b >. )  <->  ( a  =  A  /\  b  =  ( B  X.  ran  A )  /\  x  =  <. a ,  b >. ) )
455, 44bitri 249 . . . . . . . 8  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b )  <-> 
( a  =  A  /\  b  =  ( B  X.  ran  A
)  /\  x  =  <. a ,  b >.
) )
46452exbii 1645 . . . . . . 7  |-  ( E. a E. b ( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b )  <->  E. a E. b ( a  =  A  /\  b  =  ( B  X.  ran  A )  /\  x  =  <. a ,  b >. ) )
477, 29xpex 6598 . . . . . . . 8  |-  ( B  X.  ran  A )  e.  _V
48 opeq1 4218 . . . . . . . . 9  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
4948eqeq2d 2481 . . . . . . . 8  |-  ( a  =  A  ->  (
x  =  <. a ,  b >.  <->  x  =  <. A ,  b >.
) )
50 opeq2 4219 . . . . . . . . 9  |-  ( b  =  ( B  X.  ran  A )  ->  <. A , 
b >.  =  <. A , 
( B  X.  ran  A ) >. )
5150eqeq2d 2481 . . . . . . . 8  |-  ( b  =  ( B  X.  ran  A )  ->  (
x  =  <. A , 
b >. 
<->  x  =  <. A , 
( B  X.  ran  A ) >. ) )
526, 47, 49, 51ceqsex2v 3157 . . . . . . 7  |-  ( E. a E. b ( a  =  A  /\  b  =  ( B  X.  ran  A )  /\  x  =  <. a ,  b >. )  <->  x  =  <. A ,  ( B  X.  ran  A )
>. )
534, 46, 523bitri 271 . . . . . 6  |-  ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  <->  x  =  <. A ,  ( B  X.  ran  A ) >. )
5453anbi1i 695 . . . . 5  |-  ( (
<. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  /\  xCap C
)  <->  ( x  = 
<. A ,  ( B  X.  ran  A )
>.  /\  xCap C ) )
5554exbii 1644 . . . 4  |-  ( E. x ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  /\  xCap C )  <->  E. x
( x  =  <. A ,  ( B  X.  ran  A ) >.  /\  xCap C ) )
563, 55bitri 249 . . 3  |-  ( <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C  <->  E. x ( x  = 
<. A ,  ( B  X.  ran  A )
>.  /\  xCap C ) )
57 opex 4716 . . . 4  |-  <. A , 
( B  X.  ran  A ) >.  e.  _V
58 breq1 4455 . . . 4  |-  ( x  =  <. A ,  ( B  X.  ran  A
) >.  ->  ( xCap C 
<-> 
<. A ,  ( B  X.  ran  A )
>.Cap C ) )
5957, 58ceqsexv 3155 . . 3  |-  ( E. x ( x  = 
<. A ,  ( B  X.  ran  A )
>.  /\  xCap C )  <->  <. A ,  ( B  X.  ran  A )
>.Cap C )
606, 47, 2brcap 29485 . . 3  |-  ( <. A ,  ( B  X.  ran  A ) >.Cap C 
<->  C  =  ( A  i^i  ( B  X.  ran  A ) ) )
6156, 59, 603bitri 271 . 2  |-  ( <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C  <-> 
C  =  ( A  i^i  ( B  X.  ran  A ) ) )
62 df-restrict 29415 . . 3  |- Restrict  =  (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) )
6362breqi 4458 . 2  |-  ( <. A ,  B >.Restrict C  <->  <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C )
64 dfres3 29083 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  ran  A ) )
6564eqeq2i 2485 . 2  |-  ( C  =  ( A  |`  B )  <->  C  =  ( A  i^i  ( B  X.  ran  A ) ) )
6661, 63, 653bitr4i 277 1  |-  ( <. A ,  B >.Restrict C  <->  C  =  ( A  |`  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3118    i^i cin 3480   <.cop 4038   class class class wbr 4452    X. cxp 5002   ran crn 5005    |` cres 5006    o. ccom 5008   1stc1st 6792   2ndc2nd 6793    (x) ctxp 29374  Cartccart 29385  Rangecrange 29388  Capccap 29391  Restrictcrestrict 29395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-opab 4511  df-mpt 4512  df-eprel 4796  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-fo 5599  df-fv 5601  df-1st 6794  df-2nd 6795  df-symdif 29363  df-txp 29398  df-pprod 29399  df-image 29408  df-cart 29409  df-range 29412  df-cap 29414  df-restrict 29415
This theorem is referenced by:  tfrqfree  29496
  Copyright terms: Public domain W3C validator