MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex Structured version   Unicode version

Theorem brrelex 5027
Description: A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )

Proof of Theorem brrelex
StepHypRef Expression
1 brrelex12 5026 . 2  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
21simpld 457 1  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1823   _Vcvv 3106   class class class wbr 4439   Rel wrel 4993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-xp 4994  df-rel 4995
This theorem is referenced by:  brrelexi  5029  posn  5057  frsn  5059  releldm  5224  relelrn  5225  relimasn  5348  funmo  5586  ertr  7318  dirtr  16065  vdgrun  25103  vdgrfiun  25104
  Copyright terms: Public domain W3C validator