Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrangeg Structured version   Unicode version

Theorem brrangeg 27972
Description: Closed form of brrange 27970. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
brrangeg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ARange B  <->  B  =  ran  A ) )

Proof of Theorem brrangeg
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4300 . . 3  |-  ( a  =  A  ->  (
aRange b  <->  ARange b
) )
2 rneq 5070 . . . 4  |-  ( a  =  A  ->  ran  a  =  ran  A )
32eqeq2d 2454 . . 3  |-  ( a  =  A  ->  (
b  =  ran  a  <->  b  =  ran  A ) )
41, 3bibi12d 321 . 2  |-  ( a  =  A  ->  (
( aRange b  <->  b  =  ran  a )  <->  ( ARange b 
<->  b  =  ran  A
) ) )
5 breq2 4301 . . 3  |-  ( b  =  B  ->  ( ARange b  <->  ARange B ) )
6 eqeq1 2449 . . 3  |-  ( b  =  B  ->  (
b  =  ran  A  <->  B  =  ran  A ) )
75, 6bibi12d 321 . 2  |-  ( b  =  B  ->  (
( ARange b  <->  b  =  ran  A )  <->  ( ARange B  <-> 
B  =  ran  A
) ) )
8 vex 2980 . . 3  |-  a  e. 
_V
9 vex 2980 . . 3  |-  b  e. 
_V
108, 9brrange 27970 . 2  |-  ( aRange b  <->  b  =  ran  a )
114, 7, 10vtocl2g 3039 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ARange B  <->  B  =  ran  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4297   ran crn 4846  Rangecrange 27879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-eprel 4637  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-fo 5429  df-fv 5431  df-1st 6582  df-2nd 6583  df-symdif 27854  df-txp 27889  df-image 27899  df-range 27903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator