Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrangeg Structured version   Unicode version

Theorem brrangeg 29513
Description: Closed form of brrange 29511. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
brrangeg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ARange B  <->  B  =  ran  A ) )

Proof of Theorem brrangeg
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4456 . . 3  |-  ( a  =  A  ->  (
aRange b  <->  ARange b
) )
2 rneq 5234 . . . 4  |-  ( a  =  A  ->  ran  a  =  ran  A )
32eqeq2d 2481 . . 3  |-  ( a  =  A  ->  (
b  =  ran  a  <->  b  =  ran  A ) )
41, 3bibi12d 321 . 2  |-  ( a  =  A  ->  (
( aRange b  <->  b  =  ran  a )  <->  ( ARange b 
<->  b  =  ran  A
) ) )
5 breq2 4457 . . 3  |-  ( b  =  B  ->  ( ARange b  <->  ARange B ) )
6 eqeq1 2471 . . 3  |-  ( b  =  B  ->  (
b  =  ran  A  <->  B  =  ran  A ) )
75, 6bibi12d 321 . 2  |-  ( b  =  B  ->  (
( ARange b  <->  b  =  ran  A )  <->  ( ARange B  <-> 
B  =  ran  A
) ) )
8 vex 3121 . . 3  |-  a  e. 
_V
9 vex 3121 . . 3  |-  b  e. 
_V
108, 9brrange 29511 . 2  |-  ( aRange b  <->  b  =  ran  a )
114, 7, 10vtocl2g 3180 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ARange B  <->  B  =  ran  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4453   ran crn 5006  Rangecrange 29420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-eprel 4797  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fo 5600  df-fv 5602  df-1st 6795  df-2nd 6796  df-symdif 29395  df-txp 29430  df-image 29440  df-range 29444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator