Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof3 Structured version   Unicode version

Theorem broutsideof3 28291
Description: Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) ) ) )
Distinct variable groups:    N, c    A, c    B, c    P, c

Proof of Theorem broutsideof3
StepHypRef Expression
1 broutsideof2 28287 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2 simpl 457 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
3 simpr3 996 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
4 simpr1 994 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
5 btwndiff 28192 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) )
62, 3, 4, 5syl3anc 1219 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. c  e.  ( EE `  N ) ( P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )
76adantr 465 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) )
8 df-3an 967 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) ) )
9 3anass 969 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c )  <->  ( (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. )  /\  ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) ) )
10 simpr3 996 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  =/=  c )
1110necomd 2719 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  -> 
c  =/=  P )
12 simp1 988 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simp23 1023 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
14 simp22 1022 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
15 simp21 1021 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
16 simp3 990 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
17 simpr1r 1046 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  A  Btwn  <. P ,  B >. )
1812, 14, 15, 13, 17btwncomand 28180 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  A  Btwn  <. B ,  P >. )
19 simpr2 995 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. B ,  c
>. )
2012, 13, 14, 15, 16, 18, 19btwnexch3and 28186 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. A ,  c
>. )
2111, 20, 193jca 1168 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  -> 
( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) )
228, 9, 21syl2anbr 480 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) ) )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )
2322expr 615 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( ( P  Btwn  <. B ,  c
>.  /\  P  =/=  c
)  ->  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
2423an32s 802 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  /\  c  e.  ( EE `  N
) )  ->  (
( P  Btwn  <. B , 
c >.  /\  P  =/=  c )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
2524reximdva 2924 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( E. c  e.  ( EE `  N ) ( P 
Btwn  <. B ,  c
>.  /\  P  =/=  c
)  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
267, 25mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) )
2726expr 615 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( A  Btwn  <. P ,  B >.  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
28 simpr2 995 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
29 btwndiff 28192 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) )
302, 28, 4, 29syl3anc 1219 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. c  e.  ( EE `  N ) ( P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )
3130adantr 465 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) )
32 3anass 969 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c )  <->  ( (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) ) )
33 simpr3 996 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  =/=  c )
3433necomd 2719 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  -> 
c  =/=  P )
35 simpr2 995 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. A ,  c
>. )
36 simpr1r 1046 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  B  Btwn  <. P ,  A >. )
3712, 13, 15, 14, 36btwncomand 28180 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  B  Btwn  <. A ,  P >. )
3812, 14, 13, 15, 16, 37, 35btwnexch3and 28186 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. B ,  c
>. )
3934, 35, 383jca 1168 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  -> 
( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) )
408, 32, 39syl2anbr 480 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) ) )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )
4140expr 615 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( ( P  Btwn  <. A ,  c
>.  /\  P  =/=  c
)  ->  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4241an32s 802 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  /\  c  e.  ( EE `  N
) )  ->  (
( P  Btwn  <. A , 
c >.  /\  P  =/=  c )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
4342reximdva 2924 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( E. c  e.  ( EE `  N ) ( P 
Btwn  <. A ,  c
>.  /\  P  =/=  c
)  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4431, 43mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) )
4544expr 615 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( B  Btwn  <. P ,  A >.  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4627, 45jaod 380 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
47 simprr1 1036 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  c  =/=  P
)
48 simpll 753 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
49 simplr1 1030 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
50 simplr2 1031 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
51 simpr 461 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
52 simprr2 1037 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. A , 
c >. )
5348, 49, 50, 51, 52btwncomand 28180 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. c ,  A >. )
54 simplr3 1032 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
55 simprr3 1038 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. B , 
c >. )
5648, 49, 54, 51, 55btwncomand 28180 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. c ,  B >. )
57 btwnconn2 28267 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( c  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <.
c ,  A >.  /\  P  Btwn  <. c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
5848, 51, 49, 50, 54, 57syl122anc 1228 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  (
( c  =/=  P  /\  P  Btwn  <. c ,  A >.  /\  P  Btwn  <.
c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
5958adantr 465 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  ( ( c  =/=  P  /\  P  Btwn  <. c ,  A >.  /\  P  Btwn  <. c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6047, 53, 56, 59mp3and 1318 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
6160expr 615 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6261an32s 802 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  /\  c  e.  ( EE `  N ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6362rexlimdva 2937 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6446, 63impbid 191 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  <->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
6564pm5.32da 641 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) ) )
66 df-3an 967 . . 3  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
67 df-3an 967 . . 3  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
6865, 66, 673bitr4g 288 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( A  =/=  P  /\  B  =/= 
P  /\  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) ) )
691, 68bitrd 253 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    e. wcel 1758    =/= wne 2644   E.wrex 2796   <.cop 3981   class class class wbr 4390   ` cfv 5516   NNcn 10423   EEcee 23269    Btwn cbtwn 23270  OutsideOfcoutsideof 28284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-oi 7825  df-card 8210  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-n0 10681  df-z 10748  df-uz 10963  df-rp 11093  df-ico 11407  df-icc 11408  df-fz 11539  df-fzo 11650  df-seq 11908  df-exp 11967  df-hash 12205  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-clim 13068  df-sum 13266  df-ee 23272  df-btwn 23273  df-cgr 23274  df-ofs 28148  df-colinear 28204  df-ifs 28205  df-cgr3 28206  df-fs 28207  df-outsideof 28285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator