Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof2 Structured version   Unicode version

Theorem broutsideof2 30000
Description: Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )

Proof of Theorem broutsideof2
StepHypRef Expression
1 broutsideof 29999 . 2  |-  ( POutsideOf <. A ,  B >.  <->  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )
2 btwntriv1 29894 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  A  Btwn  <. A ,  B >. )
323adant3r1 1203 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  Btwn  <. A ,  B >. )
4 breq1 4442 . . . . . . . 8  |-  ( A  =  P  ->  ( A  Btwn  <. A ,  B >.  <-> 
P  Btwn  <. A ,  B >. ) )
53, 4syl5ibcom 220 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  =  P  ->  P  Btwn  <. A ,  B >. ) )
65necon3bd 2666 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( -.  P  Btwn  <. A ,  B >.  ->  A  =/=  P ) )
76imp 427 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  -.  P  Btwn  <. A ,  B >. )  ->  A  =/=  P )
87adantrl 713 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  A  =/=  P )
9 btwntriv2 29890 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  B  Btwn  <. A ,  B >. )
1093adant3r1 1203 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  Btwn  <. A ,  B >. )
11 breq1 4442 . . . . . . . 8  |-  ( B  =  P  ->  ( B  Btwn  <. A ,  B >.  <-> 
P  Btwn  <. A ,  B >. ) )
1210, 11syl5ibcom 220 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  =  P  ->  P  Btwn  <. A ,  B >. ) )
1312necon3bd 2666 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( -.  P  Btwn  <. A ,  B >.  ->  B  =/=  P ) )
1413imp 427 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  -.  P  Btwn  <. A ,  B >. )  ->  B  =/=  P )
1514adantrl 713 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  B  =/=  P )
16 brcolinear 29937 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Colinear  <. A ,  B >. 
<->  ( P  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  P >.  \/  B  Btwn  <. P ,  A >. ) ) )
17 pm2.24 109 . . . . . . . 8  |-  ( P 
Btwn  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
1817a1i 11 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
19 3anrot 976 . . . . . . . . . 10  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )
20 btwncom 29892 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >. 
<->  A  Btwn  <. P ,  B >. ) )
2119, 20sylan2b 473 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >. 
<->  A  Btwn  <. P ,  B >. ) )
22 orc 383 . . . . . . . . 9  |-  ( A 
Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
2321, 22syl6bi 228 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
2423a1dd 46 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
25 olc 382 . . . . . . . . 9  |-  ( B 
Btwn  <. P ,  A >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
2625a1d 25 . . . . . . . 8  |-  ( B 
Btwn  <. P ,  A >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
2726a1i 11 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2818, 24, 273jaod 1290 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( P  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  P >.  \/  B  Btwn  <. P ,  A >. )  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2916, 28sylbid 215 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Colinear  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
3029imp32 431 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
318, 15, 303jca 1174 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  ( A  =/=  P  /\  B  =/= 
P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
32 simp3 996 . . . . . 6  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  -> 
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
33 3ancomb 980 . . . . . . . 8  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( P  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
34 btwncolinear2 29948 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  P  Colinear  <. A ,  B >. ) )
3533, 34sylan2b 473 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  P  Colinear  <. A ,  B >. ) )
36 btwncolinear1 29947 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  P  Colinear  <. A ,  B >. ) )
3735, 36jaod 378 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  P  Colinear  <. A ,  B >. ) )
3832, 37syl5 32 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  ->  P  Colinear  <. A ,  B >. ) )
3938imp 427 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  P  Colinear  <. A ,  B >. )
40 simpr2 1001 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  A  =/=  P )
4140neneqd 2656 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  A  =  P )
42 simprl1 1039 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  A  Btwn  <. P ,  B >. )
43 simprr 755 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. A ,  B >. )
44 simpl 455 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
45 simpr2 1001 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
46 simpr1 1000 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
47 simpr3 1002 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
48 btwnswapid 29895 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
4944, 45, 46, 47, 48syl13anc 1228 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
5049adantr 463 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  ( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
5142, 43, 50mp2and 677 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  A  =  P )
5251expr 613 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  ( P  Btwn  <. A ,  B >.  ->  A  =  P ) )
5341, 52mtod 177 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  P  Btwn  <. A ,  B >. )
54533exp2 1212 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
55 simpr3 1002 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  B  =/=  P )
5655neneqd 2656 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  B  =  P )
57 simprl1 1039 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  B  Btwn  <. P ,  A >. )
58 simprr 755 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. A ,  B >. )
5944, 46, 45, 47, 58btwncomand 29893 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. B ,  A >. )
60 3anrot 976 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ( EE
`  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  <->  ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
61 btwnswapid 29895 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6260, 61sylan2br 474 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6362adantr 463 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  ( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6457, 59, 63mp2and 677 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  B  =  P )
6564expr 613 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  ( P  Btwn  <. A ,  B >.  ->  B  =  P ) )
6656, 65mtod 177 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  P  Btwn  <. A ,  B >. )
67663exp2 1212 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
6854, 67jaod 378 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
6968com12 31 . . . . . 6  |-  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
7069com4l 84 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  =/=  P  ->  ( B  =/=  P  ->  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
71703imp2 1209 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  -.  P  Btwn  <. A ,  B >. )
7239, 71jca 530 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )
7331, 72impbida 830 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. )  <->  ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
741, 73syl5bb 257 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    \/ w3o 970    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   <.cop 4022   class class class wbr 4439   ` cfv 5570   NNcn 10531   EEcee 24393    Btwn cbtwn 24394    Colinear ccolin 29915  OutsideOfcoutsideof 29997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-ee 24396  df-btwn 24397  df-cgr 24398  df-colinear 29917  df-outsideof 29998
This theorem is referenced by:  outsidene1  30001  outsidene2  30002  btwnoutside  30003  broutsideof3  30004  outsideofcom  30006  outsideoftr  30007  outsideofeq  30008  outsideofeu  30009  lineunray  30025
  Copyright terms: Public domain W3C validator