MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropopvvv Structured version   Unicode version

Theorem bropopvvv 6884
Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017.)
Hypotheses
Ref Expression
bropopvvv.o  |-  O  =  ( v  e.  _V ,  e  e.  _V  |->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ph } ) )
bropopvvv.p  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ph  <->  ps )
)
bropopvvv.oo  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( V O E ) B )  =  { <. f ,  p >.  |  th } )
Assertion
Ref Expression
bropopvvv  |-  ( F ( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) )
Distinct variable groups:    E, a,
b, e, f, p, v    V, a, b, e, f, p, v    ps, e, v
Allowed substitution hints:    ph( v, e, f, p, a, b)    ps( f, p, a, b)    th( v, e, f, p, a, b)    A( v, e, f, p, a, b)    B( v, e, f, p, a, b)    P( v, e, f, p, a, b)    F( v, e, f, p, a, b)    O( v, e, f, p, a, b)

Proof of Theorem bropopvvv
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 df-br 4421 . . 3  |-  ( F ( A ( V O E ) B ) P  <->  <. F ,  P >.  e.  ( A ( V O E ) B ) )
2 ne0i 3767 . . . 4  |-  ( <. F ,  P >.  e.  ( A ( V O E ) B )  ->  ( A
( V O E ) B )  =/=  (/) )
3 df-ov 6305 . . . . . 6  |-  ( A ( V O E ) B )  =  ( ( V O E ) `  <. A ,  B >. )
4 ndmfv 5902 . . . . . 6  |-  ( -. 
<. A ,  B >.  e. 
dom  ( V O E )  ->  (
( V O E ) `  <. A ,  B >. )  =  (/) )
53, 4syl5eq 2475 . . . . 5  |-  ( -. 
<. A ,  B >.  e. 
dom  ( V O E )  ->  ( A ( V O E ) B )  =  (/) )
65necon1ai 2655 . . . 4  |-  ( ( A ( V O E ) B )  =/=  (/)  ->  <. A ,  B >.  e.  dom  ( V O E ) )
7 simpl 458 . . . . . . . . . 10  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
8 bropopvvv.p . . . . . . . . . . 11  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ph  <->  ps )
)
98opabbidv 4484 . . . . . . . . . 10  |-  ( ( v  =  V  /\  e  =  E )  ->  { <. f ,  p >.  |  ph }  =  { <. f ,  p >.  |  ps } )
107, 7, 9mpt2eq123dv 6364 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ph } )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } ) )
11 bropopvvv.o . . . . . . . . 9  |-  O  =  ( v  e.  _V ,  e  e.  _V  |->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ph } ) )
1210, 11ovmpt2ga 6437 . . . . . . . 8  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  ( V O E )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } ) )
1312dmeqd 5053 . . . . . . 7  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  dom  ( V O E )  =  dom  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } ) )
1413eleq2d 2492 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  ( <. A ,  B >.  e. 
dom  ( V O E )  <->  <. A ,  B >.  e.  dom  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } ) ) )
15 dmoprabss 6389 . . . . . . . . 9  |-  dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }  C_  ( V  X.  V )
1615sseli 3460 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }  ->  <. A ,  B >.  e.  ( V  X.  V ) )
17 opelxp 4880 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( V  X.  V
)  <->  ( A  e.  V  /\  B  e.  V ) )
18 bropopvvv.oo . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( V O E ) B )  =  { <. f ,  p >.  |  th } )
1918breqd 4431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V O E ) B ) P  <->  F { <. f ,  p >.  |  th } P ) )
20 brabv 6347 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F { <. f ,  p >.  |  th } P  ->  ( F  e.  _V  /\  P  e.  _V )
)
2120anim2i 571 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  F { <. f ,  p >.  |  th } P )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
2221ex 435 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( F { <. f ,  p >.  |  th } P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) )
2322adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F { <. f ,  p >.  |  th } P  ->  ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
2419, 23sylbid 218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
2524ex 435 . . . . . . . . . . . . . . . . . 18  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) )
2625com23 81 . . . . . . . . . . . . . . . . 17  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) )
2726a1d 26 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) ) )
2811mpt2ndm0 6521 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( V O E )  =  (/) )
29 fveq1 5877 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V O E )  =  (/)  ->  ( ( V O E ) `
 <. A ,  B >. )  =  ( (/) ` 
<. A ,  B >. ) )
303, 29syl5eq 2475 . . . . . . . . . . . . . . . . . 18  |-  ( ( V O E )  =  (/)  ->  ( A ( V O E ) B )  =  ( (/) `  <. A ,  B >. ) )
31 0fv 5911 . . . . . . . . . . . . . . . . . 18  |-  ( (/) ` 
<. A ,  B >. )  =  (/)
3230, 31syl6eq 2479 . . . . . . . . . . . . . . . . 17  |-  ( ( V O E )  =  (/)  ->  ( A ( V O E ) B )  =  (/) )
33 eqneqall 2631 . . . . . . . . . . . . . . . . 17  |-  ( ( A ( V O E ) B )  =  (/)  ->  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F
( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) ) )
3428, 32, 333syl 18 . . . . . . . . . . . . . . . 16  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) ) )
3527, 34pm2.61i 167 . . . . . . . . . . . . . . 15  |-  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F
( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) )
362, 35syl 17 . . . . . . . . . . . . . 14  |-  ( <. F ,  P >.  e.  ( A ( V O E ) B )  ->  ( F
( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) )
371, 36sylbi 198 . . . . . . . . . . . . 13  |-  ( F ( A ( V O E ) B ) P  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) )
3837pm2.43i 49 . . . . . . . . . . . 12  |-  ( F ( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
3938com12 32 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
4039anc2ri 560 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( A  e.  V  /\  B  e.  V ) ) ) )
41 df-3an 984 . . . . . . . . . 10  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  <->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( A  e.  V  /\  B  e.  V ) ) )
4240, 41syl6ibr 230 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
4317, 42sylbi 198 . . . . . . . 8  |-  ( <. A ,  B >.  e.  ( V  X.  V
)  ->  ( F
( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) ) )
4416, 43syl 17 . . . . . . 7  |-  ( <. A ,  B >.  e. 
dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }  ->  ( F
( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) ) )
45 df-mpt2 6307 . . . . . . . 8  |-  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  =  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }
4645dmeqi 5052 . . . . . . 7  |-  dom  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  =  dom  { <. <. a ,  b >. ,  c
>.  |  ( (
a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }
4744, 46eleq2s 2530 . . . . . 6  |-  ( <. A ,  B >.  e. 
dom  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
4814, 47syl6bi 231 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  ( <. A ,  B >.  e. 
dom  ( V O E )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
49 3ianor 999 . . . . . 6  |-  ( -.  ( V  e.  _V  /\  E  e.  _V  /\  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  <->  ( -.  V  e.  _V  \/  -.  E  e.  _V  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) )
50 df-3or 983 . . . . . . 7  |-  ( ( -.  V  e.  _V  \/  -.  E  e.  _V  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) 
<->  ( ( -.  V  e.  _V  \/  -.  E  e.  _V )  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) )
51 ianor 490 . . . . . . . . 9  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  <->  ( -.  V  e.  _V  \/  -.  E  e.  _V ) )
5228dmeqd 5053 . . . . . . . . . . . 12  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  dom  ( V O E )  =  dom  (/) )
5352eleq2d 2492 . . . . . . . . . . 11  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  <->  <. A ,  B >.  e.  dom  (/) ) )
54 dm0 5064 . . . . . . . . . . . 12  |-  dom  (/)  =  (/)
5554eleq2i 2500 . . . . . . . . . . 11  |-  ( <. A ,  B >.  e. 
dom  (/)  <->  <. A ,  B >.  e.  (/) )
5653, 55syl6bb 264 . . . . . . . . . 10  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  <->  <. A ,  B >.  e.  (/) ) )
57 noel 3765 . . . . . . . . . . 11  |-  -.  <. A ,  B >.  e.  (/)
5857pm2.21i 134 . . . . . . . . . 10  |-  ( <. A ,  B >.  e.  (/)  ->  ( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
5956, 58syl6bi 231 . . . . . . . . 9  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
6051, 59sylbir 216 . . . . . . . 8  |-  ( ( -.  V  e.  _V  \/  -.  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
61 anor 491 . . . . . . . . . 10  |-  ( ( V  e.  _V  /\  E  e.  _V )  <->  -.  ( -.  V  e. 
_V  \/  -.  E  e.  _V ) )
62 id 23 . . . . . . . . . . . . . 14  |-  ( V  e.  _V  ->  V  e.  _V )
6362ancri 554 . . . . . . . . . . . . 13  |-  ( V  e.  _V  ->  ( V  e.  _V  /\  V  e.  _V ) )
6463adantr 466 . . . . . . . . . . . 12  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( V  e.  _V  /\  V  e.  _V )
)
65 mpt2exga 6880 . . . . . . . . . . . 12  |-  ( ( V  e.  _V  /\  V  e.  _V )  ->  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )
6664, 65syl 17 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )
6766pm2.24d 137 . . . . . . . . . 10  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) ) )
6861, 67sylbir 216 . . . . . . . . 9  |-  ( -.  ( -.  V  e. 
_V  \/  -.  E  e.  _V )  ->  ( -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V  ->  ( <. A ,  B >.  e. 
dom  ( V O E )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) ) )
6968imp 430 . . . . . . . 8  |-  ( ( -.  ( -.  V  e.  _V  \/  -.  E  e.  _V )  /\  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  -> 
( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7060, 69jaoi3 978 . . . . . . 7  |-  ( ( ( -.  V  e. 
_V  \/  -.  E  e.  _V )  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  -> 
( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7150, 70sylbi 198 . . . . . 6  |-  ( ( -.  V  e.  _V  \/  -.  E  e.  _V  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7249, 71sylbi 198 . . . . 5  |-  ( -.  ( V  e.  _V  /\  E  e.  _V  /\  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  -> 
( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7348, 72pm2.61i 167 . . . 4  |-  ( <. A ,  B >.  e. 
dom  ( V O E )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
742, 6, 733syl 18 . . 3  |-  ( <. F ,  P >.  e.  ( A ( V O E ) B )  ->  ( F
( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) ) )
751, 74sylbi 198 . 2  |-  ( F ( A ( V O E ) B ) P  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
7675pm2.43i 49 1  |-  ( F ( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   _Vcvv 3081   (/)c0 3761   <.cop 4002   class class class wbr 4420   {copab 4478    X. cxp 4848   dom cdm 4850   ` cfv 5598  (class class class)co 6302   {coprab 6303    |-> cmpt2 6304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805
This theorem is referenced by:  wlkonprop  25249  trlonprop  25258  pthonprop  25293  spthonprp  25301
  Copyright terms: Public domain W3C validator