MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropopvvv Structured version   Unicode version

Theorem bropopvvv 6860
Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017.)
Hypotheses
Ref Expression
bropopvvv.o  |-  O  =  ( v  e.  _V ,  e  e.  _V  |->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ph } ) )
bropopvvv.p  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ph  <->  ps )
)
bropopvvv.oo  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( V O E ) B )  =  { <. f ,  p >.  |  th } )
Assertion
Ref Expression
bropopvvv  |-  ( F ( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) )
Distinct variable groups:    E, a,
b, e, f, p, v    V, a, b, e, f, p, v    ps, e, v
Allowed substitution hints:    ph( v, e, f, p, a, b)    ps( f, p, a, b)    th( v, e, f, p, a, b)    A( v, e, f, p, a, b)    B( v, e, f, p, a, b)    P( v, e, f, p, a, b)    F( v, e, f, p, a, b)    O( v, e, f, p, a, b)

Proof of Theorem bropopvvv
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 df-br 4448 . . 3  |-  ( F ( A ( V O E ) B ) P  <->  <. F ,  P >.  e.  ( A ( V O E ) B ) )
2 ne0i 3791 . . . 4  |-  ( <. F ,  P >.  e.  ( A ( V O E ) B )  ->  ( A
( V O E ) B )  =/=  (/) )
3 df-ov 6285 . . . . . 6  |-  ( A ( V O E ) B )  =  ( ( V O E ) `  <. A ,  B >. )
4 ndmfv 5888 . . . . . 6  |-  ( -. 
<. A ,  B >.  e. 
dom  ( V O E )  ->  (
( V O E ) `  <. A ,  B >. )  =  (/) )
53, 4syl5eq 2520 . . . . 5  |-  ( -. 
<. A ,  B >.  e. 
dom  ( V O E )  ->  ( A ( V O E ) B )  =  (/) )
65necon1ai 2698 . . . 4  |-  ( ( A ( V O E ) B )  =/=  (/)  ->  <. A ,  B >.  e.  dom  ( V O E ) )
7 simpl 457 . . . . . . . . . 10  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
8 bropopvvv.p . . . . . . . . . . 11  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ph  <->  ps )
)
98opabbidv 4510 . . . . . . . . . 10  |-  ( ( v  =  V  /\  e  =  E )  ->  { <. f ,  p >.  |  ph }  =  { <. f ,  p >.  |  ps } )
107, 7, 9mpt2eq123dv 6341 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ph } )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } ) )
11 bropopvvv.o . . . . . . . . 9  |-  O  =  ( v  e.  _V ,  e  e.  _V  |->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ph } ) )
1210, 11ovmpt2ga 6414 . . . . . . . 8  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  ( V O E )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } ) )
1312dmeqd 5203 . . . . . . 7  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  dom  ( V O E )  =  dom  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } ) )
1413eleq2d 2537 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  ( <. A ,  B >.  e. 
dom  ( V O E )  <->  <. A ,  B >.  e.  dom  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } ) ) )
15 dmoprabss 6366 . . . . . . . . 9  |-  dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }  C_  ( V  X.  V )
1615sseli 3500 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }  ->  <. A ,  B >.  e.  ( V  X.  V ) )
17 opelxp 5028 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( V  X.  V
)  <->  ( A  e.  V  /\  B  e.  V ) )
18 bropopvvv.oo . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( V O E ) B )  =  { <. f ,  p >.  |  th } )
1918breqd 4458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V O E ) B ) P  <->  F { <. f ,  p >.  |  th } P ) )
20 brabv 6324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F { <. f ,  p >.  |  th } P  ->  ( F  e.  _V  /\  P  e.  _V )
)
2120anim2i 569 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  F { <. f ,  p >.  |  th } P )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
2221ex 434 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( F { <. f ,  p >.  |  th } P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) )
2322adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F { <. f ,  p >.  |  th } P  ->  ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
2419, 23sylbid 215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
2524ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) )
2625com23 78 . . . . . . . . . . . . . . . . 17  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) )
2726a1d 25 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) ) )
2811reldmmpt2 6395 . . . . . . . . . . . . . . . . . 18  |-  Rel  dom  O
2928ovprc 6309 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( V O E )  =  (/) )
30 fveq1 5863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V O E )  =  (/)  ->  ( ( V O E ) `
 <. A ,  B >. )  =  ( (/) ` 
<. A ,  B >. ) )
313, 30syl5eq 2520 . . . . . . . . . . . . . . . . . 18  |-  ( ( V O E )  =  (/)  ->  ( A ( V O E ) B )  =  ( (/) `  <. A ,  B >. ) )
32 0fv 5897 . . . . . . . . . . . . . . . . . 18  |-  ( (/) ` 
<. A ,  B >. )  =  (/)
3331, 32syl6eq 2524 . . . . . . . . . . . . . . . . 17  |-  ( ( V O E )  =  (/)  ->  ( A ( V O E ) B )  =  (/) )
34 df-ne 2664 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A ( V O E ) B )  =/=  (/)  <->  -.  ( A
( V O E ) B )  =  (/) )
35 pm2.21 108 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( A ( V O E ) B )  =  (/)  ->  (
( A ( V O E ) B )  =  (/)  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) ) )
3634, 35sylbi 195 . . . . . . . . . . . . . . . . . 18  |-  ( ( A ( V O E ) B )  =/=  (/)  ->  ( ( A ( V O E ) B )  =  (/)  ->  ( F ( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) ) )
3736com12 31 . . . . . . . . . . . . . . . . 17  |-  ( ( A ( V O E ) B )  =  (/)  ->  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F
( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) ) )
3829, 33, 373syl 20 . . . . . . . . . . . . . . . 16  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) ) )
3927, 38pm2.61i 164 . . . . . . . . . . . . . . 15  |-  ( ( A ( V O E ) B )  =/=  (/)  ->  ( F
( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) )
402, 39syl 16 . . . . . . . . . . . . . 14  |-  ( <. F ,  P >.  e.  ( A ( V O E ) B )  ->  ( F
( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) ) )
411, 40sylbi 195 . . . . . . . . . . . . 13  |-  ( F ( A ( V O E ) B ) P  ->  ( F ( A ( V O E ) B ) P  -> 
( ( A  e.  V  /\  B  e.  V )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) ) )
4241pm2.43i 47 . . . . . . . . . . . 12  |-  ( F ( A ( V O E ) B ) P  ->  (
( A  e.  V  /\  B  e.  V
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
4342com12 31 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
4443anc2ri 558 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( A  e.  V  /\  B  e.  V ) ) ) )
45 df-3an 975 . . . . . . . . . 10  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  <->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( A  e.  V  /\  B  e.  V ) ) )
4644, 45syl6ibr 227 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
4717, 46sylbi 195 . . . . . . . 8  |-  ( <. A ,  B >.  e.  ( V  X.  V
)  ->  ( F
( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) ) )
4816, 47syl 16 . . . . . . 7  |-  ( <. A ,  B >.  e. 
dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }  ->  ( F
( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) ) )
49 df-mpt2 6287 . . . . . . . 8  |-  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  =  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }
5049dmeqi 5202 . . . . . . 7  |-  dom  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  =  dom  { <. <. a ,  b >. ,  c
>.  |  ( (
a  e.  V  /\  b  e.  V )  /\  c  =  { <. f ,  p >.  |  ps } ) }
5148, 50eleq2s 2575 . . . . . 6  |-  ( <. A ,  B >.  e. 
dom  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
5214, 51syl6bi 228 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ps } )  e. 
_V )  ->  ( <. A ,  B >.  e. 
dom  ( V O E )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
53 3ianor 990 . . . . . 6  |-  ( -.  ( V  e.  _V  /\  E  e.  _V  /\  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  <->  ( -.  V  e.  _V  \/  -.  E  e.  _V  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) )
54 df-3or 974 . . . . . . 7  |-  ( ( -.  V  e.  _V  \/  -.  E  e.  _V  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) 
<->  ( ( -.  V  e.  _V  \/  -.  E  e.  _V )  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) )
55 ianor 488 . . . . . . . . . 10  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  <->  ( -.  V  e.  _V  \/  -.  E  e.  _V ) )
5629dmeqd 5203 . . . . . . . . . . . . 13  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  dom  ( V O E )  =  dom  (/) )
5756eleq2d 2537 . . . . . . . . . . . 12  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  <->  <. A ,  B >.  e.  dom  (/) ) )
58 dm0 5214 . . . . . . . . . . . . 13  |-  dom  (/)  =  (/)
5958eleq2i 2545 . . . . . . . . . . . 12  |-  ( <. A ,  B >.  e. 
dom  (/)  <->  <. A ,  B >.  e.  (/) )
6057, 59syl6bb 261 . . . . . . . . . . 11  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  <->  <. A ,  B >.  e.  (/) ) )
61 noel 3789 . . . . . . . . . . . 12  |-  -.  <. A ,  B >.  e.  (/)
6261pm2.21i 131 . . . . . . . . . . 11  |-  ( <. A ,  B >.  e.  (/)  ->  ( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
6360, 62syl6bi 228 . . . . . . . . . 10  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
6455, 63sylbir 213 . . . . . . . . 9  |-  ( ( -.  V  e.  _V  \/  -.  E  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
65 anor 489 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V )  <->  -.  ( -.  V  e. 
_V  \/  -.  E  e.  _V ) )
66 id 22 . . . . . . . . . . . . . . 15  |-  ( V  e.  _V  ->  V  e.  _V )
6766ancri 552 . . . . . . . . . . . . . 14  |-  ( V  e.  _V  ->  ( V  e.  _V  /\  V  e.  _V ) )
6867adantr 465 . . . . . . . . . . . . 13  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( V  e.  _V  /\  V  e.  _V )
)
69 mpt2exga 6856 . . . . . . . . . . . . 13  |-  ( ( V  e.  _V  /\  V  e.  _V )  ->  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )
7068, 69syl 16 . . . . . . . . . . . 12  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )
7170pm2.24d 143 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) ) )
7265, 71sylbir 213 . . . . . . . . . 10  |-  ( -.  ( -.  V  e. 
_V  \/  -.  E  e.  _V )  ->  ( -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V  ->  ( <. A ,  B >.  e. 
dom  ( V O E )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) ) )
7372imp 429 . . . . . . . . 9  |-  ( ( -.  ( -.  V  e.  _V  \/  -.  E  e.  _V )  /\  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  -> 
( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7464, 73jaoi 379 . . . . . . . 8  |-  ( ( ( -.  V  e. 
_V  \/  -.  E  e.  _V )  \/  ( -.  ( -.  V  e. 
_V  \/  -.  E  e.  _V )  /\  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V ) )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7574jaoi2 966 . . . . . . 7  |-  ( ( ( -.  V  e. 
_V  \/  -.  E  e.  _V )  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  -> 
( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7654, 75sylbi 195 . . . . . 6  |-  ( ( -.  V  e.  _V  \/  -.  E  e.  _V  \/  -.  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  ->  ( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7753, 76sylbi 195 . . . . 5  |-  ( -.  ( V  e.  _V  /\  E  e.  _V  /\  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ps } )  e.  _V )  -> 
( <. A ,  B >.  e.  dom  ( V O E )  -> 
( F ( A ( V O E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) ) )
7852, 77pm2.61i 164 . . . 4  |-  ( <. A ,  B >.  e. 
dom  ( V O E )  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
792, 6, 783syl 20 . . 3  |-  ( <. F ,  P >.  e.  ( A ( V O E ) B )  ->  ( F
( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) ) )
801, 79sylbi 195 . 2  |-  ( F ( A ( V O E ) B ) P  ->  ( F ( A ( V O E ) B ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) ) )
8180pm2.43i 47 1  |-  ( F ( A ( V O E ) B ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113   (/)c0 3785   <.cop 4033   class class class wbr 4447   {copab 4504    X. cxp 4997   dom cdm 4999   ` cfv 5586  (class class class)co 6282   {coprab 6283    |-> cmpt2 6284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782
This theorem is referenced by:  wlkonprop  24211  trlonprop  24220  pthonprop  24255  spthonprp  24263
  Copyright terms: Public domain W3C validator