MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp Structured version   Unicode version

Theorem brinxp 5003
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 5002 . . 3  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
2 df-3an 974 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
31, 2bitri 249 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
43baibr 903 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 972    e. wcel 1840    i^i cin 3410   class class class wbr 4392    X. cxp 4938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pr 4627
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-op 3976  df-br 4393  df-opab 4451  df-xp 4946
This theorem is referenced by:  poinxp  5004  soinxp  5005  frinxp  5006  seinxp  5007  exfo  5981  isores2  6166  ltpiord  9213  ordpinq  9269  pwsleval  14997  tsrss  16067  ordtrest  19886  ordtrest2lem  19887  ordtrestNEW  28237  ordtrest2NEWlem  28238
  Copyright terms: Public domain W3C validator