Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfullfun Structured version   Unicode version

Theorem brfullfun 29826
Description: A binary relationship form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brfullfun.1  |-  A  e. 
_V
brfullfun.2  |-  B  e. 
_V
Assertion
Ref Expression
brfullfun  |-  ( AFullFun
F B  <->  B  =  ( F `  A ) )

Proof of Theorem brfullfun
StepHypRef Expression
1 eqcom 2463 . 2  |-  ( (FullFun
F `  A )  =  B  <->  B  =  (FullFun F `
 A ) )
2 fullfunfnv 29824 . . 3  |- FullFun F  Fn  _V
3 brfullfun.1 . . 3  |-  A  e. 
_V
4 fnbrfvb 5888 . . 3  |-  ( (FullFun
F  Fn  _V  /\  A  e.  _V )  ->  ( (FullFun F `  A )  =  B  <-> 
AFullFun F B ) )
52, 3, 4mp2an 670 . 2  |-  ( (FullFun
F `  A )  =  B  <->  AFullFun F B )
6 fullfunfv 29825 . . 3  |-  (FullFun F `  A )  =  ( F `  A )
76eqeq2i 2472 . 2  |-  ( B  =  (FullFun F `  A )  <->  B  =  ( F `  A ) )
81, 5, 73bitr3i 275 1  |-  ( AFullFun
F B  <->  B  =  ( F `  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1398    e. wcel 1823   _Vcvv 3106   class class class wbr 4439    Fn wfn 5565   ` cfv 5570  FullFuncfullfn 29727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-symdif 3715  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-eprel 4780  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fo 5576  df-fv 5578  df-1st 6773  df-2nd 6774  df-txp 29731  df-singleton 29739  df-singles 29740  df-image 29741  df-funpart 29751  df-fullfun 29752
This theorem is referenced by:  dfrdg4  29828  tfrqfree  29829
  Copyright terms: Public domain W3C validator