MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzind Structured version   Unicode version

Theorem brfi1uzind 12536
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with  L  =  0 (see brfi1ind 12537) or  L  =  1. (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Hypotheses
Ref Expression
brfi1uzind.r  |-  Rel  G
brfi1uzind.f  |-  F  e.  U
brfi1uzind.l  |-  L  e. 
NN0
brfi1uzind.1  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ps  <->  ph ) )
brfi1uzind.2  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ps  <->  th )
)
brfi1uzind.3  |-  ( ( v G e  /\  n  e.  v )  ->  ( v  \  {
n } ) G F )
brfi1uzind.4  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  ( th 
<->  ch ) )
brfi1uzind.base  |-  ( ( v G e  /\  ( # `  v )  =  L )  ->  ps )
brfi1uzind.step  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
Assertion
Ref Expression
brfi1uzind  |-  ( ( V G E  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
Distinct variable groups:    e, n, v, y    e, E, n, v    f, F, w   
e, G, f, n, v, w, y    e, V, n, v    ps, f, n, w, y    th, e, n, v    ch, f, w    ph, e, n, v    e, L, n, v, y
Allowed substitution hints:    ph( y, w, f)    ps( v, e)    ch( y, v, e, n)    th( y, w, f)    U( y, w, v, e, f, n)    E( y, w, f)    F( y, v, e, n)    L( w, f)    V( y, w, f)

Proof of Theorem brfi1uzind
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hashcl 12431 . . . 4  |-  ( V  e.  Fin  ->  ( # `
 V )  e. 
NN0 )
2 df-clel 2452 . . . . 5  |-  ( (
# `  V )  e.  NN0  <->  E. n ( n  =  ( # `  V
)  /\  n  e.  NN0 ) )
3 brfi1uzind.l . . . . . . . . . . . . . . 15  |-  L  e. 
NN0
4 nn0z 10908 . . . . . . . . . . . . . . 15  |-  ( L  e.  NN0  ->  L  e.  ZZ )
53, 4mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( L  <_  ( # `
 V )  /\  n  e.  NN0 )  /\  n  =  ( # `  V
) )  ->  L  e.  ZZ )
6 nn0z 10908 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  n  e.  ZZ )
76ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( L  <_  ( # `
 V )  /\  n  e.  NN0 )  /\  n  =  ( # `  V
) )  ->  n  e.  ZZ )
8 breq2 4460 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  V )  =  n  ->  ( L  <_  ( # `  V
)  <->  L  <_  n ) )
98eqcoms 2469 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( # `  V
)  ->  ( L  <_  ( # `  V
)  <->  L  <_  n ) )
109biimpcd 224 . . . . . . . . . . . . . . . 16  |-  ( L  <_  ( # `  V
)  ->  ( n  =  ( # `  V
)  ->  L  <_  n ) )
1110adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( L  <_  ( # `  V
)  /\  n  e.  NN0 )  ->  ( n  =  ( # `  V
)  ->  L  <_  n ) )
1211imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( L  <_  ( # `
 V )  /\  n  e.  NN0 )  /\  n  =  ( # `  V
) )  ->  L  <_  n )
13 eqeq1 2461 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  L  ->  (
x  =  ( # `  v )  <->  L  =  ( # `  v ) ) )
1413anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( x  =  L  ->  (
( v G e  /\  x  =  (
# `  v )
)  <->  ( v G e  /\  L  =  ( # `  v
) ) ) )
1514imbi1d 317 . . . . . . . . . . . . . . . 16  |-  ( x  =  L  ->  (
( ( v G e  /\  x  =  ( # `  v
) )  ->  ps ) 
<->  ( ( v G e  /\  L  =  ( # `  v
) )  ->  ps ) ) )
16152albidv 1716 . . . . . . . . . . . . . . 15  |-  ( x  =  L  ->  ( A. v A. e ( ( v G e  /\  x  =  (
# `  v )
)  ->  ps )  <->  A. v A. e ( ( v G e  /\  L  =  (
# `  v )
)  ->  ps )
) )
17 eqeq1 2461 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  =  ( # `  v )  <->  y  =  ( # `  v ) ) )
1817anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( v G e  /\  x  =  (
# `  v )
)  <->  ( v G e  /\  y  =  ( # `  v
) ) ) )
1918imbi1d 317 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( ( v G e  /\  x  =  ( # `  v
) )  ->  ps ) 
<->  ( ( v G e  /\  y  =  ( # `  v
) )  ->  ps ) ) )
20192albidv 1716 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( A. v A. e ( ( v G e  /\  x  =  (
# `  v )
)  ->  ps )  <->  A. v A. e ( ( v G e  /\  y  =  (
# `  v )
)  ->  ps )
) )
21 eqeq1 2461 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( y  +  1 )  ->  (
x  =  ( # `  v )  <->  ( y  +  1 )  =  ( # `  v
) ) )
2221anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  +  1 )  ->  (
( v G e  /\  x  =  (
# `  v )
)  <->  ( v G e  /\  ( y  +  1 )  =  ( # `  v
) ) ) )
2322imbi1d 317 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  +  1 )  ->  (
( ( v G e  /\  x  =  ( # `  v
) )  ->  ps ) 
<->  ( ( v G e  /\  ( y  +  1 )  =  ( # `  v
) )  ->  ps ) ) )
24232albidv 1716 . . . . . . . . . . . . . . 15  |-  ( x  =  ( y  +  1 )  ->  ( A. v A. e ( ( v G e  /\  x  =  (
# `  v )
)  ->  ps )  <->  A. v A. e ( ( v G e  /\  ( y  +  1 )  =  (
# `  v )
)  ->  ps )
) )
25 eqeq1 2461 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  n  ->  (
x  =  ( # `  v )  <->  n  =  ( # `  v ) ) )
2625anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( x  =  n  ->  (
( v G e  /\  x  =  (
# `  v )
)  <->  ( v G e  /\  n  =  ( # `  v
) ) ) )
2726imbi1d 317 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  (
( ( v G e  /\  x  =  ( # `  v
) )  ->  ps ) 
<->  ( ( v G e  /\  n  =  ( # `  v
) )  ->  ps ) ) )
28272albidv 1716 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  ( A. v A. e ( ( v G e  /\  x  =  (
# `  v )
)  ->  ps )  <->  A. v A. e ( ( v G e  /\  n  =  (
# `  v )
)  ->  ps )
) )
29 eqcom 2466 . . . . . . . . . . . . . . . . . 18  |-  ( L  =  ( # `  v
)  <->  ( # `  v
)  =  L )
30 brfi1uzind.base . . . . . . . . . . . . . . . . . 18  |-  ( ( v G e  /\  ( # `  v )  =  L )  ->  ps )
3129, 30sylan2b 475 . . . . . . . . . . . . . . . . 17  |-  ( ( v G e  /\  L  =  ( # `  v
) )  ->  ps )
3231gen2 1620 . . . . . . . . . . . . . . . 16  |-  A. v A. e ( ( v G e  /\  L  =  ( # `  v
) )  ->  ps )
3332a1i 11 . . . . . . . . . . . . . . 15  |-  ( L  e.  ZZ  ->  A. v A. e ( ( v G e  /\  L  =  ( # `  v
) )  ->  ps ) )
34 breq12 4461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  =  w  /\  e  =  f )  ->  ( v G e  <-> 
w G f ) )
35 fveq2 5872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  ( # `
 v )  =  ( # `  w
) )
3635eqeq2d 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  (
y  =  ( # `  v )  <->  y  =  ( # `  w ) ) )
3736adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  =  w  /\  e  =  f )  ->  ( y  =  (
# `  v )  <->  y  =  ( # `  w
) ) )
3834, 37anbi12d 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ( v G e  /\  y  =  ( # `  v
) )  <->  ( w G f  /\  y  =  ( # `  w
) ) ) )
39 brfi1uzind.2 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ps  <->  th )
)
4038, 39imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ( ( v G e  /\  y  =  ( # `  v
) )  ->  ps ) 
<->  ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )
) )
4140cbval2v 2031 . . . . . . . . . . . . . . . 16  |-  ( A. v A. e ( ( v G e  /\  y  =  ( # `  v
) )  ->  ps ) 
<-> 
A. w A. f
( ( w G f  /\  y  =  ( # `  w
) )  ->  th )
)
42 nn0ge0 10842 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  NN0  ->  0  <_  L )
43 0red 9614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ZZ  ->  0  e.  RR )
44 nn0re 10825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( L  e.  NN0  ->  L  e.  RR )
453, 44mp1i 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ZZ  ->  L  e.  RR )
46 zre 10889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ZZ  ->  y  e.  RR )
47 letr 9695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 0  e.  RR  /\  L  e.  RR  /\  y  e.  RR )  ->  (
( 0  <_  L  /\  L  <_  y )  ->  0  <_  y
) )
4843, 45, 46, 47syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ZZ  ->  (
( 0  <_  L  /\  L  <_  y )  ->  0  <_  y
) )
49 0nn0 10831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  0  e.  NN0
50 pm3.22 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( 0  <_  y  /\  y  e.  ZZ )  ->  ( y  e.  ZZ  /\  0  <_  y )
)
51 0z 10896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  0  e.  ZZ
52 eluz1 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( 0  e.  ZZ  ->  (
y  e.  ( ZZ>= ` 
0 )  <->  ( y  e.  ZZ  /\  0  <_ 
y ) ) )
5351, 52mp1i 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( 0  <_  y  /\  y  e.  ZZ )  ->  ( y  e.  (
ZZ>= `  0 )  <->  ( y  e.  ZZ  /\  0  <_ 
y ) ) )
5450, 53mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 0  <_  y  /\  y  e.  ZZ )  ->  y  e.  ( ZZ>= ` 
0 ) )
55 eluznn0 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 0  e.  NN0  /\  y  e.  ( ZZ>= ` 
0 ) )  -> 
y  e.  NN0 )
5649, 54, 55sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 0  <_  y  /\  y  e.  ZZ )  ->  y  e.  NN0 )
5756ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0  <_  y  ->  (
y  e.  ZZ  ->  y  e.  NN0 ) )
5848, 57syl6com 35 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  <_  L  /\  L  <_  y )  -> 
( y  e.  ZZ  ->  ( y  e.  ZZ  ->  y  e.  NN0 )
) )
5958ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 0  <_  L  ->  ( L  <_  y  ->  (
y  e.  ZZ  ->  ( y  e.  ZZ  ->  y  e.  NN0 ) ) ) )
6059com14 88 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ZZ  ->  ( L  <_  y  ->  (
y  e.  ZZ  ->  ( 0  <_  L  ->  y  e.  NN0 ) ) ) )
6160pm2.43a 49 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ZZ  ->  ( L  <_  y  ->  (
0  <_  L  ->  y  e.  NN0 ) ) )
6261imp 429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  ZZ  /\  L  <_  y )  -> 
( 0  <_  L  ->  y  e.  NN0 )
)
6362com12 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  <_  L  ->  (
( y  e.  ZZ  /\  L  <_  y )  ->  y  e.  NN0 )
)
643, 42, 63mp2b 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ZZ  /\  L  <_  y )  -> 
y  e.  NN0 )
65643adant1 1014 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( L  e.  ZZ  /\  y  e.  ZZ  /\  L  <_  y )  ->  y  e.  NN0 )
66 eqcom 2466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +  1 )  =  ( # `  v
)  <->  ( # `  v
)  =  ( y  +  1 ) )
67 nn0p1gt0 10846 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  NN0  ->  0  < 
( y  +  1 ) )
6867adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  NN0  /\  ( # `  v )  =  ( y  +  1 ) )  -> 
0  <  ( y  +  1 ) )
69 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  NN0  /\  ( # `  v )  =  ( y  +  1 ) )  -> 
( # `  v )  =  ( y  +  1 ) )
7068, 69breqtrrd 4482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  NN0  /\  ( # `  v )  =  ( y  +  1 ) )  -> 
0  <  ( # `  v
) )
7166, 70sylan2b 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  NN0  /\  ( y  +  1 )  =  ( # `  v ) )  -> 
0  <  ( # `  v
) )
7271adantrl 715 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  NN0  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )
) )  ->  0  <  ( # `  v
) )
73 vex 3112 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  v  e. 
_V
74 hashgt0elex 12470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  _V  /\  0  <  ( # `  v
) )  ->  E. n  n  e.  v )
75 brfi1uzind.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( v G e  /\  n  e.  v )  ->  ( v  \  {
n } ) G F )
7673a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( y  e.  NN0  /\  n  e.  v )  ->  v  e.  _V )
77 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( y  e.  NN0  /\  n  e.  v )  ->  n  e.  v )
78 simpl 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( y  e.  NN0  /\  n  e.  v )  ->  y  e.  NN0 )
79 brfi1indlem 12535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( v  e.  _V  /\  n  e.  v  /\  y  e.  NN0 )  -> 
( ( # `  v
)  =  ( y  +  1 )  -> 
( # `  ( v 
\  { n }
) )  =  y ) )
8066, 79syl5bi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( v  e.  _V  /\  n  e.  v  /\  y  e.  NN0 )  -> 
( ( y  +  1 )  =  (
# `  v )  ->  ( # `  (
v  \  { n } ) )  =  y ) )
8176, 77, 78, 80syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( y  e.  NN0  /\  n  e.  v )  ->  ( ( y  +  1 )  =  (
# `  v )  ->  ( # `  (
v  \  { n } ) )  =  y ) )
8281imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
)  ->  ( # `  (
v  \  { n } ) )  =  y )
83 peano2nn0 10857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( y  e.  NN0  ->  ( y  +  1 )  e. 
NN0 )
8483ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
)  ->  ( y  +  1 )  e. 
NN0 )
8584ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
( y  +  1 )  e.  NN0 )
86 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
v G e )
87 simplrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
( y  +  1 )  =  ( # `  v ) )
88 simprlr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  ->  n  e.  v )
8988adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  ->  n  e.  v )
9086, 87, 893jca 1176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
( v G e  /\  ( y  +  1 )  =  (
# `  v )  /\  n  e.  v
) )
9185, 90jca 532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )  /\  n  e.  v
) ) )
92 difexg 4604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( v  e.  _V  ->  (
v  \  { n } )  e.  _V )
9373, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( v 
\  { n }
)  e.  _V
94 brfi1uzind.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  F  e.  U
95 breq12 4461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  (
w G f  <->  ( v  \  { n } ) G F ) )
96 eqcom 2466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  |-  ( y  =  ( # `  w
)  <->  ( # `  w
)  =  y )
97 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  |-  ( w  =  ( v  \  { n } )  ->  ( # `  w
)  =  ( # `  ( v  \  {
n } ) ) )
9897eqeq1d 2459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  |-  ( w  =  ( v  \  { n } )  ->  ( ( # `  w )  =  y  <-> 
( # `  ( v 
\  { n }
) )  =  y ) )
9996, 98syl5bb 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  |-  ( w  =  ( v  \  { n } )  ->  ( y  =  ( # `  w
)  <->  ( # `  (
v  \  { n } ) )  =  y ) )
10099adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  (
y  =  ( # `  w )  <->  ( # `  (
v  \  { n } ) )  =  y ) )
10195, 100anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  (
( w G f  /\  y  =  (
# `  w )
)  <->  ( ( v 
\  { n }
) G F  /\  ( # `  ( v 
\  { n }
) )  =  y ) ) )
102 brfi1uzind.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  ( th 
<->  ch ) )
103101, 102imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  F )  ->  (
( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  <->  ( ( ( v  \  { n } ) G F  /\  ( # `
 ( v  \  { n } ) )  =  y )  ->  ch ) ) )
104103spc2gv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( ( v  \  {
n } )  e. 
_V  /\  F  e.  U )  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ( ( ( v 
\  { n }
) G F  /\  ( # `  ( v 
\  { n }
) )  =  y )  ->  ch )
) )
10593, 94, 104mp2an 672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ( ( ( v 
\  { n }
) G F  /\  ( # `  ( v 
\  { n }
) )  =  y )  ->  ch )
)
106105expdimp 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( A. w A. f
( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  ->  (
( # `  ( v 
\  { n }
) )  =  y  ->  ch ) )
107106ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
( ( # `  (
v  \  { n } ) )  =  y  ->  ch )
)
108663anbi2i 1188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( v G e  /\  ( y  +  1 )  =  ( # `  v )  /\  n  e.  v )  <->  ( v G e  /\  ( # `
 v )  =  ( y  +  1 )  /\  n  e.  v ) )
109108anbi2i 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )  /\  n  e.  v
) )  <->  ( (
y  +  1 )  e.  NN0  /\  (
v G e  /\  ( # `  v )  =  ( y  +  1 )  /\  n  e.  v ) ) )
110 brfi1uzind.step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ch )  ->  ps )
111109, 110sylanb 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )  /\  n  e.  v
) )  /\  ch )  ->  ps )
11291, 107, 111syl6an 545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  /\  ( v  \  {
n } ) G F )  /\  (
( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
) )  /\  v G e )  -> 
( ( # `  (
v  \  { n } ) )  =  y  ->  ps )
)
113112exp41 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ( ( v  \  { n } ) G F  ->  (
( ( y  e. 
NN0  /\  n  e.  v )  /\  (
y  +  1 )  =  ( # `  v
) )  ->  (
v G e  -> 
( ( # `  (
v  \  { n } ) )  =  y  ->  ps )
) ) ) )
114113com15 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
# `  ( v  \  { n } ) )  =  y  -> 
( ( v  \  { n } ) G F  ->  (
( ( y  e. 
NN0  /\  n  e.  v )  /\  (
y  +  1 )  =  ( # `  v
) )  ->  (
v G e  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
115114com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
# `  ( v  \  { n } ) )  =  y  -> 
( ( ( y  e.  NN0  /\  n  e.  v )  /\  (
y  +  1 )  =  ( # `  v
) )  ->  (
( v  \  {
n } ) G F  ->  ( v G e  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) ) ) ) )
11682, 115mpcom 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( y  e.  NN0  /\  n  e.  v )  /\  ( y  +  1 )  =  (
# `  v )
)  ->  ( (
v  \  { n } ) G F  ->  ( v G e  ->  ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) )
117116ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( y  e.  NN0  /\  n  e.  v )  ->  ( ( y  +  1 )  =  (
# `  v )  ->  ( ( v  \  { n } ) G F  ->  (
v G e  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
118117com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( y  e.  NN0  /\  n  e.  v )  ->  ( ( v  \  { n } ) G F  ->  (
( y  +  1 )  =  ( # `  v )  ->  (
v G e  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
119118ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( y  e.  NN0  ->  ( n  e.  v  ->  (
( v  \  {
n } ) G F  ->  ( (
y  +  1 )  =  ( # `  v
)  ->  ( v G e  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) ) ) ) ) )
120119com15 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( v G e  ->  (
n  e.  v  -> 
( ( v  \  { n } ) G F  ->  (
( y  +  1 )  =  ( # `  v )  ->  (
y  e.  NN0  ->  ( A. w A. f
( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) ) )
121120imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( v G e  /\  n  e.  v )  ->  ( ( v  \  { n } ) G F  ->  (
( y  +  1 )  =  ( # `  v )  ->  (
y  e.  NN0  ->  ( A. w A. f
( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
12275, 121mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( v G e  /\  n  e.  v )  ->  ( ( y  +  1 )  =  (
# `  v )  ->  ( y  e.  NN0  ->  ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) )
123122ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v G e  ->  (
n  e.  v  -> 
( ( y  +  1 )  =  (
# `  v )  ->  ( y  e.  NN0  ->  ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
124123com4l 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  v  ->  (
( y  +  1 )  =  ( # `  v )  ->  (
y  e.  NN0  ->  ( v G e  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
125124exlimiv 1723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( E. n  n  e.  v  ->  ( ( y  +  1 )  =  ( # `  v
)  ->  ( y  e.  NN0  ->  ( v G e  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) ) ) ) )
12674, 125syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( v  e.  _V  /\  0  <  ( # `  v
) )  ->  (
( y  +  1 )  =  ( # `  v )  ->  (
y  e.  NN0  ->  ( v G e  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) )
127126ex 434 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  e.  _V  ->  (
0  <  ( # `  v
)  ->  ( (
y  +  1 )  =  ( # `  v
)  ->  ( y  e.  NN0  ->  ( v G e  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) ) ) ) ) )
128127com25 91 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  _V  ->  (
v G e  -> 
( ( y  +  1 )  =  (
# `  v )  ->  ( y  e.  NN0  ->  ( 0  <  ( # `
 v )  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) ) ) )
12973, 128ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v G e  ->  (
( y  +  1 )  =  ( # `  v )  ->  (
y  e.  NN0  ->  ( 0  <  ( # `  v )  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) ) ) ) )
130129imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( v G e  /\  ( y  +  1 )  =  ( # `  v ) )  -> 
( y  e.  NN0  ->  ( 0  <  ( # `
 v )  -> 
( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) ) )
131130impcom 430 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  NN0  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )
) )  ->  (
0  <  ( # `  v
)  ->  ( A. w A. f ( ( w G f  /\  y  =  ( # `  w
) )  ->  th )  ->  ps ) ) )
13272, 131mpd 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  NN0  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )
) )  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) )
13365, 132sylan 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( L  e.  ZZ  /\  y  e.  ZZ  /\  L  <_  y )  /\  ( v G e  /\  ( y  +  1 )  =  (
# `  v )
) )  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  ps ) )
134133impancom 440 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( L  e.  ZZ  /\  y  e.  ZZ  /\  L  <_  y )  /\  A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )
)  ->  ( (
v G e  /\  ( y  +  1 )  =  ( # `  v ) )  ->  ps ) )
135134alrimivv 1721 . . . . . . . . . . . . . . . . 17  |-  ( ( ( L  e.  ZZ  /\  y  e.  ZZ  /\  L  <_  y )  /\  A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )
)  ->  A. v A. e ( ( v G e  /\  (
y  +  1 )  =  ( # `  v
) )  ->  ps ) )
136135ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  y  e.  ZZ  /\  L  <_  y )  ->  ( A. w A. f ( ( w G f  /\  y  =  (
# `  w )
)  ->  th )  ->  A. v A. e
( ( v G e  /\  ( y  +  1 )  =  ( # `  v
) )  ->  ps ) ) )
13741, 136syl5bi 217 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ZZ  /\  y  e.  ZZ  /\  L  <_  y )  ->  ( A. v A. e ( ( v G e  /\  y  =  (
# `  v )
)  ->  ps )  ->  A. v A. e
( ( v G e  /\  ( y  +  1 )  =  ( # `  v
) )  ->  ps ) ) )
13816, 20, 24, 28, 33, 137uzind 10975 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  n  e.  ZZ  /\  L  <_  n )  ->  A. v A. e ( ( v G e  /\  n  =  ( # `  v
) )  ->  ps ) )
1395, 7, 12, 138syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( L  <_  ( # `
 V )  /\  n  e.  NN0 )  /\  n  =  ( # `  V
) )  ->  A. v A. e ( ( v G e  /\  n  =  ( # `  v
) )  ->  ps ) )
140 brfi1uzind.r . . . . . . . . . . . . . . . . 17  |-  Rel  G
141140brrelexi 5049 . . . . . . . . . . . . . . . 16  |-  ( V G E  ->  V  e.  _V )
142140brrelex2i 5050 . . . . . . . . . . . . . . . 16  |-  ( V G E  ->  E  e.  _V )
143141, 142jca 532 . . . . . . . . . . . . . . 15  |-  ( V G E  ->  ( V  e.  _V  /\  E  e.  _V ) )
144 breq12 4461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v G e  <-> 
V G E ) )
145 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  V  ->  ( # `
 v )  =  ( # `  V
) )
146145eqeq2d 2471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  V  ->  (
n  =  ( # `  v )  <->  n  =  ( # `  V ) ) )
147146adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  =  V  /\  e  =  E )  ->  ( n  =  (
# `  v )  <->  n  =  ( # `  V
) ) )
148144, 147anbi12d 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( v G e  /\  n  =  ( # `  v
) )  <->  ( V G E  /\  n  =  ( # `  V
) ) ) )
149 brfi1uzind.1 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ps  <->  ph ) )
150148, 149imbi12d 320 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( ( v G e  /\  n  =  ( # `  v
) )  ->  ps ) 
<->  ( ( V G E  /\  n  =  ( # `  V
) )  ->  ph )
) )
151150spc2gv 3197 . . . . . . . . . . . . . . . . 17  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( A. v A. e ( ( v G e  /\  n  =  ( # `  v
) )  ->  ps )  ->  ( ( V G E  /\  n  =  ( # `  V
) )  ->  ph )
) )
152151com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( V G E  /\  n  =  ( # `  V
) )  ->  ( A. v A. e ( ( v G e  /\  n  =  (
# `  v )
)  ->  ps )  ->  ph ) ) )
153152expd 436 . . . . . . . . . . . . . . 15  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( V G E  ->  ( n  =  ( # `  V
)  ->  ( A. v A. e ( ( v G e  /\  n  =  ( # `  v
) )  ->  ps )  ->  ph ) ) ) )
154143, 153mpcom 36 . . . . . . . . . . . . . 14  |-  ( V G E  ->  (
n  =  ( # `  V )  ->  ( A. v A. e ( ( v G e  /\  n  =  (
# `  v )
)  ->  ps )  ->  ph ) ) )
155154imp 429 . . . . . . . . . . . . 13  |-  ( ( V G E  /\  n  =  ( # `  V
) )  ->  ( A. v A. e ( ( v G e  /\  n  =  (
# `  v )
)  ->  ps )  ->  ph ) )
156139, 155syl5com 30 . . . . . . . . . . . 12  |-  ( ( ( L  <_  ( # `
 V )  /\  n  e.  NN0 )  /\  n  =  ( # `  V
) )  ->  (
( V G E  /\  n  =  (
# `  V )
)  ->  ph ) )
157156exp31 604 . . . . . . . . . . 11  |-  ( L  <_  ( # `  V
)  ->  ( n  e.  NN0  ->  ( n  =  ( # `  V
)  ->  ( ( V G E  /\  n  =  ( # `  V
) )  ->  ph )
) ) )
158157com14 88 . . . . . . . . . 10  |-  ( ( V G E  /\  n  =  ( # `  V
) )  ->  (
n  e.  NN0  ->  ( n  =  ( # `  V )  ->  ( L  <_  ( # `  V
)  ->  ph ) ) ) )
159158expcom 435 . . . . . . . . 9  |-  ( n  =  ( # `  V
)  ->  ( V G E  ->  ( n  e.  NN0  ->  ( n  =  ( # `  V
)  ->  ( L  <_  ( # `  V
)  ->  ph ) ) ) ) )
160159com24 87 . . . . . . . 8  |-  ( n  =  ( # `  V
)  ->  ( n  =  ( # `  V
)  ->  ( n  e.  NN0  ->  ( V G E  ->  ( L  <_  ( # `  V
)  ->  ph ) ) ) ) )
161160pm2.43i 47 . . . . . . 7  |-  ( n  =  ( # `  V
)  ->  ( n  e.  NN0  ->  ( V G E  ->  ( L  <_  ( # `  V
)  ->  ph ) ) ) )
162161imp 429 . . . . . 6  |-  ( ( n  =  ( # `  V )  /\  n  e.  NN0 )  ->  ( V G E  ->  ( L  <_  ( # `  V
)  ->  ph ) ) )
163162exlimiv 1723 . . . . 5  |-  ( E. n ( n  =  ( # `  V
)  /\  n  e.  NN0 )  ->  ( V G E  ->  ( L  <_  ( # `  V
)  ->  ph ) ) )
1642, 163sylbi 195 . . . 4  |-  ( (
# `  V )  e.  NN0  ->  ( V G E  ->  ( L  <_  ( # `  V
)  ->  ph ) ) )
1651, 164syl 16 . . 3  |-  ( V  e.  Fin  ->  ( V G E  ->  ( L  <_  ( # `  V
)  ->  ph ) ) )
166165com12 31 . 2  |-  ( V G E  ->  ( V  e.  Fin  ->  ( L  <_  ( # `  V
)  ->  ph ) ) )
1671663imp 1190 1  |-  ( ( V G E  /\  V  e.  Fin  /\  L  <_  ( # `  V
) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819   _Vcvv 3109    \ cdif 3468   {csn 4032   class class class wbr 4456   Rel wrel 5013   ` cfv 5594  (class class class)co 6296   Fincfn 7535   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    < clt 9645    <_ cle 9646   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-hash 12409
This theorem is referenced by:  brfi1ind  12537
  Copyright terms: Public domain W3C validator