MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrng Structured version   Unicode version

Theorem brelrng 5026
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 4977 . . . . 5  |-  ( ( B  e.  G  /\  A  e.  F )  ->  ( B `' C A 
<->  A C B ) )
21ancoms 454 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G )  ->  ( B `' C A 
<->  A C B ) )
32biimp3ar 1365 . . 3  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B `' C A )
4 breldmg 5002 . . . 4  |-  ( ( B  e.  G  /\  A  e.  F  /\  B `' C A )  ->  B  e.  dom  `' C
)
543com12 1209 . . 3  |-  ( ( A  e.  F  /\  B  e.  G  /\  B `' C A )  ->  B  e.  dom  `' C
)
63, 5syld3an3 1309 . 2  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  dom  `' C
)
7 df-rn 4807 . 2  |-  ran  C  =  dom  `' C
86, 7syl6eleqr 2517 1  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ w3a 982    e. wcel 1872   class class class wbr 4366   `'ccnv 4795   dom cdm 4796   ran crn 4797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-rab 2723  df-v 3024  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-br 4367  df-opab 4426  df-cnv 4804  df-dm 4806  df-rn 4807
This theorem is referenced by:  brelrn  5027  relelrn  5030  sossfld  5245  fvrn0  5847  pgpfaclem1  17657  perpln2  24698
  Copyright terms: Public domain W3C validator