MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom5 Structured version   Unicode version

Theorem brdom5 8717
Description: An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2  |-  B  e. 
_V
Assertion
Ref Expression
brdom5  |-  ( A  ~<_  B  <->  E. f ( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
Distinct variable groups:    x, f,
y, A    B, f, x, y

Proof of Theorem brdom5
StepHypRef Expression
1 brdom3.2 . . . 4  |-  B  e. 
_V
21brdom3 8716 . . 3  |-  ( A  ~<_  B  <->  E. f ( A. x E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y f
x ) )
3 alral 2795 . . . . 5  |-  ( A. x E* y  x f y  ->  A. x  e.  B  E* y  x f y )
43anim1i 568 . . . 4  |-  ( ( A. x E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x )  -> 
( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
54eximi 1625 . . 3  |-  ( E. f ( A. x E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  E. f
( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
62, 5sylbi 195 . 2  |-  ( A  ~<_  B  ->  E. f
( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
7 inss2 3592 . . . . . . . . . . . . . 14  |-  ( f  i^i  ( B  X.  A ) )  C_  ( B  X.  A
)
8 dmss 5060 . . . . . . . . . . . . . 14  |-  ( ( f  i^i  ( B  X.  A ) ) 
C_  ( B  X.  A )  ->  dom  ( f  i^i  ( B  X.  A ) ) 
C_  dom  ( B  X.  A ) )
97, 8ax-mp 5 . . . . . . . . . . . . 13  |-  dom  (
f  i^i  ( B  X.  A ) )  C_  dom  ( B  X.  A
)
10 dmxpss 5290 . . . . . . . . . . . . 13  |-  dom  ( B  X.  A )  C_  B
119, 10sstri 3386 . . . . . . . . . . . 12  |-  dom  (
f  i^i  ( B  X.  A ) )  C_  B
1211sseli 3373 . . . . . . . . . . 11  |-  ( x  e.  dom  ( f  i^i  ( B  X.  A ) )  ->  x  e.  B )
13 inss1 3591 . . . . . . . . . . . . 13  |-  ( f  i^i  ( B  X.  A ) )  C_  f
1413ssbri 4355 . . . . . . . . . . . 12  |-  ( x ( f  i^i  ( B  X.  A ) ) y  ->  x f
y )
1514moimi 2320 . . . . . . . . . . 11  |-  ( E* y  x f y  ->  E* y  x ( f  i^i  ( B  X.  A ) ) y )
1612, 15imim12i 57 . . . . . . . . . 10  |-  ( ( x  e.  B  ->  E* y  x f
y )  ->  (
x  e.  dom  (
f  i^i  ( B  X.  A ) )  ->  E* y  x (
f  i^i  ( B  X.  A ) ) y ) )
1716ralimi2 2809 . . . . . . . . 9  |-  ( A. x  e.  B  E* y  x f y  ->  A. x  e.  dom  ( f  i^i  ( B  X.  A ) ) E* y  x ( f  i^i  ( B  X.  A ) ) y )
18 relxp 4968 . . . . . . . . . 10  |-  Rel  ( B  X.  A )
19 relin2 4979 . . . . . . . . . 10  |-  ( Rel  ( B  X.  A
)  ->  Rel  ( f  i^i  ( B  X.  A ) ) )
2018, 19ax-mp 5 . . . . . . . . 9  |-  Rel  (
f  i^i  ( B  X.  A ) )
2117, 20jctil 537 . . . . . . . 8  |-  ( A. x  e.  B  E* y  x f y  -> 
( Rel  ( f  i^i  ( B  X.  A
) )  /\  A. x  e.  dom  ( f  i^i  ( B  X.  A ) ) E* y  x ( f  i^i  ( B  X.  A ) ) y ) )
22 dffun7 5465 . . . . . . . 8  |-  ( Fun  ( f  i^i  ( B  X.  A ) )  <-> 
( Rel  ( f  i^i  ( B  X.  A
) )  /\  A. x  e.  dom  ( f  i^i  ( B  X.  A ) ) E* y  x ( f  i^i  ( B  X.  A ) ) y ) )
2321, 22sylibr 212 . . . . . . 7  |-  ( A. x  e.  B  E* y  x f y  ->  Fun  ( f  i^i  ( B  X.  A ) ) )
24 funfn 5468 . . . . . . 7  |-  ( Fun  ( f  i^i  ( B  X.  A ) )  <-> 
( f  i^i  ( B  X.  A ) )  Fn  dom  ( f  i^i  ( B  X.  A ) ) )
2523, 24sylib 196 . . . . . 6  |-  ( A. x  e.  B  E* y  x f y  -> 
( f  i^i  ( B  X.  A ) )  Fn  dom  ( f  i^i  ( B  X.  A ) ) )
26 rninxp 5298 . . . . . . 7  |-  ( ran  ( f  i^i  ( B  X.  A ) )  =  A  <->  A. x  e.  A  E. y  e.  B  y f
x )
2726biimpri 206 . . . . . 6  |-  ( A. x  e.  A  E. y  e.  B  y
f x  ->  ran  ( f  i^i  ( B  X.  A ) )  =  A )
2825, 27anim12i 566 . . . . 5  |-  ( ( A. x  e.  B  E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  (
( f  i^i  ( B  X.  A ) )  Fn  dom  ( f  i^i  ( B  X.  A ) )  /\  ran  ( f  i^i  ( B  X.  A ) )  =  A ) )
29 df-fo 5445 . . . . 5  |-  ( ( f  i^i  ( B  X.  A ) ) : dom  ( f  i^i  ( B  X.  A ) ) -onto-> A  <-> 
( ( f  i^i  ( B  X.  A
) )  Fn  dom  ( f  i^i  ( B  X.  A ) )  /\  ran  ( f  i^i  ( B  X.  A ) )  =  A ) )
3028, 29sylibr 212 . . . 4  |-  ( ( A. x  e.  B  E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  (
f  i^i  ( B  X.  A ) ) : dom  ( f  i^i  ( B  X.  A
) ) -onto-> A )
31 vex 2996 . . . . . . 7  |-  f  e. 
_V
3231inex1 4454 . . . . . 6  |-  ( f  i^i  ( B  X.  A ) )  e. 
_V
3332dmex 6532 . . . . 5  |-  dom  (
f  i^i  ( B  X.  A ) )  e. 
_V
3433fodom 8712 . . . 4  |-  ( ( f  i^i  ( B  X.  A ) ) : dom  ( f  i^i  ( B  X.  A ) ) -onto-> A  ->  A  ~<_  dom  (
f  i^i  ( B  X.  A ) ) )
35 ssdomg 7376 . . . . . 6  |-  ( B  e.  _V  ->  ( dom  ( f  i^i  ( B  X.  A ) ) 
C_  B  ->  dom  ( f  i^i  ( B  X.  A ) )  ~<_  B ) )
361, 11, 35mp2 9 . . . . 5  |-  dom  (
f  i^i  ( B  X.  A ) )  ~<_  B
37 domtr 7383 . . . . 5  |-  ( ( A  ~<_  dom  ( f  i^i  ( B  X.  A
) )  /\  dom  ( f  i^i  ( B  X.  A ) )  ~<_  B )  ->  A  ~<_  B )
3836, 37mpan2 671 . . . 4  |-  ( A  ~<_  dom  ( f  i^i  ( B  X.  A
) )  ->  A  ~<_  B )
3930, 34, 383syl 20 . . 3  |-  ( ( A. x  e.  B  E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  A  ~<_  B )
4039exlimiv 1688 . 2  |-  ( E. f ( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x )  ->  A  ~<_  B )
416, 40impbii 188 1  |-  ( A  ~<_  B  <->  E. f ( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   E*wmo 2254   A.wral 2736   E.wrex 2737   _Vcvv 2993    i^i cin 3348    C_ wss 3349   class class class wbr 4313    X. cxp 4859   dom cdm 4861   ran crn 4862   Rel wrel 4866   Fun wfun 5433    Fn wfn 5434   -onto->wfo 5437    ~<_ cdom 7329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-ac2 8653
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-recs 6853  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-card 8130  df-acn 8133  df-ac 8307
This theorem is referenced by:  brdom6disj  8720
  Copyright terms: Public domain W3C validator