MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcogw Structured version   Unicode version

Theorem brcogw 5084
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
brcogw  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )

Proof of Theorem brcogw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 997 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A  e.  V )
2 simpl2 998 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  B  e.  W )
3 breq2 4371 . . . . . 6  |-  ( x  =  X  ->  ( A D x  <->  A D X ) )
4 breq1 4370 . . . . . 6  |-  ( x  =  X  ->  (
x C B  <->  X C B ) )
53, 4anbi12d 708 . . . . 5  |-  ( x  =  X  ->  (
( A D x  /\  x C B )  <->  ( A D X  /\  X C B ) ) )
65spcegv 3120 . . . 4  |-  ( X  e.  Z  ->  (
( A D X  /\  X C B )  ->  E. x
( A D x  /\  x C B ) ) )
76imp 427 . . 3  |-  ( ( X  e.  Z  /\  ( A D X  /\  X C B ) )  ->  E. x ( A D x  /\  x C B ) )
873ad2antl3 1158 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  E. x ( A D x  /\  x C B ) )
9 brcog 5082 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
109biimpar 483 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  E. x
( A D x  /\  x C B ) )  ->  A
( C  o.  D
) B )
111, 2, 8, 10syl21anc 1225 1  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399   E.wex 1620    e. wcel 1826   class class class wbr 4367    o. ccom 4917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-rab 2741  df-v 3036  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-br 4368  df-opab 4426  df-co 4922
This theorem is referenced by:  utop2nei  20838  utop3cls  20839  iunrelexpuztr  38224
  Copyright terms: Public domain W3C validator