MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Unicode version

Theorem brcgr 23145
Description: The binary relationship form of the congruence predicate. The statement  <. A ,  B >.Cgr <. C ,  D >. should be read informally as "the  N dimensional point  A is as far from  B as  C is from  D, or "the line segment  A B is congruent to the line segment  C D. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Distinct variable groups:    i, N    A, i    B, i    C, i    D, i

Proof of Theorem brcgr
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4555 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4555 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2502 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
43anbi1d 704 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) ) ) )
5 fveq2 5690 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
65fveq1d 5692 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 1st `  x ) `  i
)  =  ( ( 1st `  <. A ,  B >. ) `  i
) )
7 fveq2 5690 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
87fveq1d 5692 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 2nd `  x ) `  i
)  =  ( ( 2nd `  <. A ,  B >. ) `  i
) )
96, 8oveq12d 6108 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
)  =  ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) )
109oveq1d 6105 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 ) )
1110sumeq2sdv 13180 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 ) )
1211eqeq1d 2450 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) )
134, 12anbi12d 710 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `  i
)  -  ( ( 2nd `  x ) `
 i ) ) ^ 2 )  = 
sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
1413rexbidv 2735 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( E. n  e.  NN  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
15 eleq1 2502 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
1615anbi2d 703 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) ) )
17 fveq2 5690 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
1817fveq1d 5692 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 1st `  y ) `  i
)  =  ( ( 1st `  <. C ,  D >. ) `  i
) )
19 fveq2 5690 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
2019fveq1d 5692 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 2nd `  y ) `  i
)  =  ( ( 2nd `  <. C ,  D >. ) `  i
) )
2118, 20oveq12d 6108 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
)  =  ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) )
2221oveq1d 6105 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) )
2322sumeq2sdv 13180 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )
2423eqeq2d 2453 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
2516, 24anbi12d 710 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <-> 
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
2625rexbidv 2735 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
27 df-cgr 23138 . . 3  |- Cgr  =  { <. x ,  y >.  |  E. n  e.  NN  ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) }
281, 2, 14, 26, 27brab 4610 . 2  |-  ( <. A ,  B >.Cgr <. C ,  D >.  <->  E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
29 opelxp2 4872 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  ->  D  e.  ( EE `  n ) )
3029ad2antll 728 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  n
) )
31 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  N
) )
32 eedimeq 23143 . . . . . . . . . 10  |-  ( ( D  e.  ( EE
`  n )  /\  D  e.  ( EE `  N ) )  ->  n  =  N )
3330, 31, 32syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
3433adantlr 714 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
35 oveq2 6098 . . . . . . . . . 10  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3635sumeq1d 13177 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 ) )
3735sumeq1d 13177 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
3836, 37eqeq12d 2456 . . . . . . . 8  |-  ( n  =  N  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
3934, 38syl 16 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
40 op1stg 6588 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1st `  <. A ,  B >. )  =  A )
4140fveq1d 5692 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 1st `  <. A ,  B >. ) `  i )  =  ( A `  i ) )
42 op2ndg 6589 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 2nd `  <. A ,  B >. )  =  B )
4342fveq1d 5692 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. A ,  B >. ) `  i )  =  ( B `  i ) )
4441, 43oveq12d 6108 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) )  =  ( ( A `  i )  -  ( B `  i ) ) )
4544oveq1d 6105 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )
4645sumeq2sdv 13180 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
47 op1stg 6588 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 1st `  <. C ,  D >. )  =  C )
4847fveq1d 5692 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 1st `  <. C ,  D >. ) `  i )  =  ( C `  i ) )
49 op2ndg 6589 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 2nd `  <. C ,  D >. )  =  D )
5049fveq1d 5692 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. C ,  D >. ) `  i )  =  ( D `  i ) )
5148, 50oveq12d 6108 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) )  =  ( ( C `  i )  -  ( D `  i ) ) )
5251oveq1d 6105 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  =  ( ( ( C `  i
)  -  ( D `
 i ) ) ^ 2 ) )
5352sumeq2sdv 13180 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
5446, 53eqeqan12d 2457 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5554ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5639, 55bitrd 253 . . . . . 6  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5756biimpd 207 . . . . 5  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5857expimpd 603 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  ( ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5958rexlimdva 2840 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
60 eleenn 23141 . . . . 5  |-  ( D  e.  ( EE `  N )  ->  N  e.  NN )
6160ad2antll 728 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  N  e.  NN )
62 opelxpi 4870 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
63 opelxpi 4870 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
6462, 63anim12i 566 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  <. C ,  D >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) ) ) )
6564adantr 465 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( <. A ,  B >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) ) )
6654biimpar 485 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
6765, 66jca 532 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
68 fveq2 5690 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
6968, 68xpeq12d 4864 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  N )  X.  ( EE `  N
) ) )
7069eleq2d 2509 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7169eleq2d 2509 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7270, 71anbi12d 710 . . . . . . . 8  |-  ( n  =  N  ->  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) ) )
7372, 38anbi12d 710 . . . . . . 7  |-  ( n  =  N  ->  (
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) ) )
7473rspcev 3072 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )  /\  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7567, 74sylan2 474 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7675exp32 605 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) ) )
7761, 76mpcom 36 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
7859, 77impbid 191 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
7928, 78syl5bb 257 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2715   <.cop 3882   class class class wbr 4291    X. cxp 4837   ` cfv 5417  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   1c1 9282    - cmin 9594   NNcn 10321   2c2 10370   ...cfz 11436   ^cexp 11864   sum_csu 13162   EEcee 23133  Cgrccgr 23135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-n0 10579  df-z 10646  df-uz 10861  df-fz 11437  df-seq 11806  df-sum 13163  df-ee 23136  df-cgr 23138
This theorem is referenced by:  axcgrrflx  23159  axcgrtr  23160  axcgrid  23161  axsegcon  23172  ax5seglem3  23176  ax5seglem6  23179  ax5seg  23183  axlowdimlem17  23203  ecgrtg  23228
  Copyright terms: Public domain W3C validator