MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn Structured version   Unicode version

Theorem brbtwn 23143
Description: The binary relationship form of the betweenness predicate. The statement  A  Btwn  <. B ,  C >. should be informally read as " A lies on a line segment between  B and  C. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
Distinct variable groups:    i, N, t    A, i, t    B, i, t    C, i, t

Proof of Theorem brbtwn
Dummy variables  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 23136 . . 3  |-  Btwn  =  `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }
21breqi 4296 . 2  |-  ( A 
Btwn  <. B ,  C >.  <-> 
A `' { <. <.
y ,  z >. ,  x >.  |  E. n  e.  NN  (
( y  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. )
3 opex 4554 . . . . 5  |-  <. B ,  C >.  e.  _V
4 brcnvg 5018 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  <. B ,  C >.  e. 
_V )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
53, 4mpan2 671 . . . 4  |-  ( A  e.  ( EE `  N )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
653ad2ant1 1009 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
7 df-br 4291 . . . 4  |-  ( <. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A  <->  <. <. B ,  C >. ,  A >.  e. 
{ <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } )
8 eleq1 2501 . . . . . . . . . 10  |-  ( y  =  B  ->  (
y  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
983anbi1d 1293 . . . . . . . . 9  |-  ( y  =  B  ->  (
( y  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) ) ) )
10 fveq1 5688 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
y `  i )  =  ( B `  i ) )
1110oveq2d 6105 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
( 1  -  t
)  x.  ( y `
 i ) )  =  ( ( 1  -  t )  x.  ( B `  i
) ) )
1211oveq1d 6104 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
z `  i )
) ) )
1312eqeq2d 2452 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( y `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) )
1413rexralbidv 2757 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( y `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) )
159, 14anbi12d 710 . . . . . . . 8  |-  ( y  =  B  ->  (
( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  z  e.  ( EE `  n
)  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) ) )
1615rexbidv 2734 . . . . . . 7  |-  ( y  =  B  ->  ( E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) ) )
17 eleq1 2501 . . . . . . . . . 10  |-  ( z  =  C  ->  (
z  e.  ( EE
`  n )  <->  C  e.  ( EE `  n ) ) )
18173anbi2d 1294 . . . . . . . . 9  |-  ( z  =  C  ->  (
( B  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) ) ) )
19 fveq1 5688 . . . . . . . . . . . . 13  |-  ( z  =  C  ->  (
z `  i )  =  ( C `  i ) )
2019oveq2d 6105 . . . . . . . . . . . 12  |-  ( z  =  C  ->  (
t  x.  ( z `
 i ) )  =  ( t  x.  ( C `  i
) ) )
2120oveq2d 6105 . . . . . . . . . . 11  |-  ( z  =  C  ->  (
( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) ) )
2221eqeq2d 2452 . . . . . . . . . 10  |-  ( z  =  C  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
2322rexralbidv 2757 . . . . . . . . 9  |-  ( z  =  C  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
2418, 23anbi12d 710 . . . . . . . 8  |-  ( z  =  C  ->  (
( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
2524rexbidv 2734 . . . . . . 7  |-  ( z  =  C  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
26 eleq1 2501 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
27263anbi3d 1295 . . . . . . . . 9  |-  ( x  =  A  ->  (
( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) ) ) )
28 fveq1 5688 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x `  i )  =  ( A `  i ) )
2928eqeq1d 2449 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
3029rexralbidv 2757 . . . . . . . . 9  |-  ( x  =  A  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
3127, 30anbi12d 710 . . . . . . . 8  |-  ( x  =  A  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
3231rexbidv 2734 . . . . . . 7  |-  ( x  =  A  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
3316, 25, 32eloprabg 6176 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
34 simp1 988 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  n )  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n
) )  ->  B  e.  ( EE `  n
) )
35 simp1 988 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
36 eedimeq 23142 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  n )  /\  B  e.  ( EE `  N ) )  ->  n  =  N )
3734, 35, 36syl2anr 478 . . . . . . . . . . 11  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  n  =  N )
38 oveq2 6097 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3938raleqdv 2921 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( A. i  e.  (
1 ... n ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4039rexbidv 2734 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4137, 40syl 16 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4241biimpd 207 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  ->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
4342expimpd 603 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  ->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4443rexlimdvw 2842 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  ->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
45 eleenn 23140 . . . . . . . . 9  |-  ( B  e.  ( EE `  N )  ->  N  e.  NN )
46453ad2ant1 1009 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  N  e.  NN )
47 fveq2 5689 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
4847eleq2d 2508 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( B  e.  ( EE `  n )  <->  B  e.  ( EE `  N ) ) )
4947eleq2d 2508 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( C  e.  ( EE `  n )  <->  C  e.  ( EE `  N ) ) )
5047eleq2d 2508 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
5148, 49, 503anbi123d 1289 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) ) )
5251, 40anbi12d 710 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  A  e.  ( EE `  N ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
5352rspcev 3071 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
5453exp32 605 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  ->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) ) )
5546, 54mpcom 36 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
5644, 55impbid 191 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
5733, 56bitrd 253 . . . . 5  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
58573comr 1195 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
597, 58syl5bb 257 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
606, 59bitrd 253 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
612, 60syl5bb 257 1  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2713   E.wrex 2714   _Vcvv 2970   <.cop 3881   class class class wbr 4290   `'ccnv 4837   ` cfv 5416  (class class class)co 6089   {coprab 6090   0cc0 9280   1c1 9281    + caddc 9283    x. cmul 9285    - cmin 9593   NNcn 10320   [,]cicc 11301   ...cfz 11435   EEcee 23132    Btwn cbtwn 23133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-z 10645  df-uz 10860  df-fz 11436  df-ee 23135  df-btwn 23136
This theorem is referenced by:  brbtwn2  23149  axsegcon  23171  ax5seg  23182  axbtwnid  23183  axpasch  23185  axeuclid  23207  axcontlem2  23209  axcontlem4  23211  axcontlem7  23214  axcontlem8  23215
  Copyright terms: Public domain W3C validator