HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Unicode version

Theorem branmfn 22515
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  (
normh `  A ) )

Proof of Theorem branmfn
StepHypRef Expression
1 fveq2 5377 . . . 4  |-  ( A  =  0h  ->  ( bra `  A )  =  ( bra `  0h ) )
21fveq2d 5381 . . 3  |-  ( A  =  0h  ->  ( normfn `
 ( bra `  A
) )  =  (
normfn `  ( bra `  0h ) ) )
3 fveq2 5377 . . 3  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
42, 3eqeq12d 2267 . 2  |-  ( A  =  0h  ->  (
( normfn `  ( bra `  A ) )  =  ( normh `  A )  <->  (
normfn `  ( bra `  0h ) )  =  (
normh `  0h ) ) )
5 brafn 22357 . . . . 5  |-  ( A  e.  ~H  ->  ( bra `  A ) : ~H --> CC )
6 nmfnval 22286 . . . . 5  |-  ( ( bra `  A ) : ~H --> CC  ->  (
normfn `  ( bra `  A
) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
75, 6syl 17 . . . 4  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
87adantr 453 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  ( bra `  A ) )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
9 nmfnsetre 22287 . . . . . . . 8  |-  ( ( bra `  A ) : ~H --> CC  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } 
C_  RR )
105, 9syl 17 . . . . . . 7  |-  ( A  e.  ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR )
11 ressxr 8756 . . . . . . 7  |-  RR  C_  RR*
1210, 11syl6ss 3112 . . . . . 6  |-  ( A  e.  ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* )
13 normcl 21534 . . . . . . 7  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
1413rexrd 8761 . . . . . 6  |-  ( A  e.  ~H  ->  ( normh `  A )  e. 
RR* )
1512, 14jca 520 . . . . 5  |-  ( A  e.  ~H  ->  ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )
)
1615adantr 453 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )
)
17 vex 2730 . . . . . . . 8  |-  z  e. 
_V
18 eqeq1 2259 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  ( abs `  ( ( bra `  A
) `  y )
)  <->  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) )
1918anbi2d 687 . . . . . . . . 9  |-  ( x  =  z  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) ) )
2019rexbidv 2528 . . . . . . . 8  |-  ( x  =  z  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( abs `  ( ( bra `  A ) `  y
) ) ) ) )
2117, 20elab 2851 . . . . . . 7  |-  ( z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( abs `  ( ( bra `  A ) `  y
) ) ) )
22 id 21 . . . . . . . . . . . . 13  |-  ( z  =  ( abs `  (
( bra `  A
) `  y )
)  ->  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) )
23 braval 22354 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( bra `  A
) `  y )  =  ( y  .ih  A ) )
2423fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( bra `  A
) `  y )
)  =  ( abs `  ( y  .ih  A
) ) )
2524adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( ( bra `  A ) `  y
) )  =  ( abs `  ( y 
.ih  A ) ) )
2622, 25sylan9eqr 2307 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  z  =  ( abs `  (
y  .ih  A )
) )
27 bcs2 21591 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  A  e.  ~H  /\  ( normh `  y )  <_ 
1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
28273expa 1156 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ~H  /\  A  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
2928ancom1s 783 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
3029adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
3126, 30eqbrtrd 3940 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
)
3231exp41 596 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  (
y  e.  ~H  ->  ( ( normh `  y )  <_  1  ->  ( z  =  ( abs `  (
( bra `  A
) `  y )
)  ->  z  <_  (
normh `  A ) ) ) ) )
3332imp4a 575 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
y  e.  ~H  ->  ( ( ( normh `  y
)  <_  1  /\  z  =  ( abs `  ( ( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
) ) )
3433rexlimdv 2628 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  z  =  ( abs `  ( ( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
) )
3534imp 420 . . . . . . 7  |-  ( ( A  e.  ~H  /\  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) ) )  -> 
z  <_  ( normh `  A ) )
3621, 35sylan2b 463 . . . . . 6  |-  ( ( A  e.  ~H  /\  z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } )  ->  z  <_  ( normh `  A ) )
3736ralrimiva 2588 . . . . 5  |-  ( A  e.  ~H  ->  A. z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
) )
3837adantr 453 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
) )
3913recnd 8741 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  CC )
4039adantr 453 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
41 normne0 21539 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
4241biimpar 473 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
4340, 42reccld 9409 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
44 simpl 445 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
45 hvmulcl 21423 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
4643, 44, 45syl2anc 645 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
47 norm1 21658 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
48 1le1 9276 . . . . . . . . . . . 12  |-  1  <_  1
4947, 48syl6eqbr 3957 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
50 ax-his3 21493 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H  /\  A  e. 
~H )  ->  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A )  =  ( ( 1  / 
( normh `  A )
)  x.  ( A 
.ih  A ) ) )
5143, 44, 44, 50syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )  =  ( ( 1  /  ( normh `  A
) )  x.  ( A  .ih  A ) ) )
5213adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
5352, 42rereccld 9467 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
54 hiidrcl 21504 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
5554adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( A  .ih  A
)  e.  RR )
5653, 55remulcld 8743 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( A 
.ih  A ) )  e.  RR )
5751, 56eqeltrd 2327 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )  e.  RR )
58 normgt0 21536 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
5958biimpa 472 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
6052, 59recgt0d 9571 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
61 0re 8718 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
62 ltle 8790 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
6361, 62mpan 654 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
6453, 60, 63sylc 58 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
65 hiidge0 21507 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
6665adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( A  .ih  A ) )
6753, 55, 64, 66mulge0d 9229 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( (
1  /  ( normh `  A ) )  x.  ( A  .ih  A
) ) )
6867, 51breqtrrd 3946 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( (
( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) )
6957, 68absidd 11782 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) )  =  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A
) )
7040, 42recid2d 9412 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( normh `  A ) )  =  1 )
7170oveq2d 5726 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( normh `  A )  x.  1 ) )
7240, 43, 40mul12d 8901 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( ( normh `  A )  x.  ( normh `  A ) ) ) )
7339sqvald 11120 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ~H  ->  (
( normh `  A ) ^ 2 )  =  ( ( normh `  A
)  x.  ( normh `  A ) ) )
74 normsq 21543 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ~H  ->  (
( normh `  A ) ^ 2 )  =  ( A  .ih  A
) )
7573, 74eqtr3d 2287 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  (
( normh `  A )  x.  ( normh `  A )
)  =  ( A 
.ih  A ) )
7675adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( normh `  A ) )  =  ( A  .ih  A
) )
7776oveq2d 5726 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( (
normh `  A )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( A  .ih  A ) ) )
7872, 77eqtrd 2285 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( A  .ih  A ) ) )
7939mulid1d 8732 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  (
( normh `  A )  x.  1 )  =  (
normh `  A ) )
8079adantr 453 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  1 )  =  ( normh `  A
) )
8171, 78, 803eqtr3rd 2294 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =  ( ( 1  /  ( normh `  A
) )  x.  ( A  .ih  A ) ) )
8251, 69, 813eqtr4rd 2296 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =  ( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) ) )
83 fveq2 5377 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( normh `  y )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) ) )
8483breq1d 3930 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( ( normh `  y )  <_ 
1  <->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 ) )
85 oveq1 5717 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( y  .ih  A )  =  ( ( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) )
8685fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( abs `  ( y  .ih  A
) )  =  ( abs `  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) ) )
8786eqeq2d 2264 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( ( normh `  A )  =  ( abs `  (
y  .ih  A )
)  <->  ( normh `  A
)  =  ( abs `  ( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )
) ) )
8884, 87anbi12d 694 . . . . . . . . . . . 12  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( (
( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  ( y 
.ih  A ) ) )  <->  ( ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) ) ) ) )
8988rcla4ev 2821 . . . . . . . . . . 11  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  (
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) ) ) )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) )
9046, 49, 82, 89syl12anc 1185 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) )
9124eqeq2d 2264 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  A
)  =  ( abs `  ( ( bra `  A
) `  y )
)  <->  ( normh `  A
)  =  ( abs `  ( y  .ih  A
) ) ) )
9291anbi2d 687 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( y 
.ih  A ) ) ) ) )
9392rexbidva 2524 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) ) )
9493adantr 453 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( E. y  e. 
~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) ) )
9590, 94mpbird 225 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) )
96 fvex 5391 . . . . . . . . . 10  |-  ( normh `  A )  e.  _V
97 eqeq1 2259 . . . . . . . . . . . 12  |-  ( x  =  ( normh `  A
)  ->  ( x  =  ( abs `  (
( bra `  A
) `  y )
)  <->  ( normh `  A
)  =  ( abs `  ( ( bra `  A
) `  y )
) ) )
9897anbi2d 687 . . . . . . . . . . 11  |-  ( x  =  ( normh `  A
)  ->  ( (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) ) )
9998rexbidv 2528 . . . . . . . . . 10  |-  ( x  =  ( normh `  A
)  ->  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) ) )
10096, 99elab 2851 . . . . . . . . 9  |-  ( (
normh `  A )  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) )
10195, 100sylibr 205 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } )
102 breq2 3924 . . . . . . . . 9  |-  ( w  =  ( normh `  A
)  ->  ( z  <  w  <->  z  <  ( normh `  A ) ) )
103102rcla4ev 2821 . . . . . . . 8  |-  ( ( ( normh `  A )  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  /\  z  <  ( normh `  A
) )  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <  w )
104101, 103sylan 459 . . . . . . 7  |-  ( ( ( A  e.  ~H  /\  A  =/=  0h )  /\  z  <  ( normh `  A ) )  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <  w )
105104adantlr 698 . . . . . 6  |-  ( ( ( ( A  e. 
~H  /\  A  =/=  0h )  /\  z  e.  RR )  /\  z  <  ( normh `  A )
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <  w )
106105ex 425 . . . . 5  |-  ( ( ( A  e.  ~H  /\  A  =/=  0h )  /\  z  e.  RR )  ->  ( z  < 
( normh `  A )  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } z  <  w ) )
107106ralrimiva 2588 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A. z  e.  RR  ( z  <  ( normh `  A )  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <  w ) )
108 supxr2 10510 . . . 4  |-  ( ( ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )  /\  ( A. z  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
)  /\  A. z  e.  RR  ( z  < 
( normh `  A )  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } z  <  w ) ) )  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  )  =  ( normh `  A )
)
10916, 38, 107, 108syl12anc 1185 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } ,  RR* ,  <  )  =  ( normh `  A )
)
1108, 109eqtrd 2285 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  ( bra `  A ) )  =  ( normh `  A )
)
111 nmfn0 22397 . . . 4  |-  ( normfn `  ( ~H  X.  {
0 } ) )  =  0
112 bra0 22360 . . . . 5  |-  ( bra `  0h )  =  ( ~H  X.  { 0 } )
113112fveq2i 5380 . . . 4  |-  ( normfn `  ( bra `  0h ) )  =  (
normfn `  ( ~H  X.  { 0 } ) )
114 norm0 21537 . . . 4  |-  ( normh `  0h )  =  0
115111, 113, 1143eqtr4i 2283 . . 3  |-  ( normfn `  ( bra `  0h ) )  =  (
normh `  0h )
116115a1i 12 . 2  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  0h ) )  =  (
normh `  0h ) )
1174, 110, 116pm2.61ne 2487 1  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  (
normh `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2239    =/= wne 2412   A.wral 2509   E.wrex 2510    C_ wss 3078   {csn 3544   class class class wbr 3920    X. cxp 4578   -->wf 4588   ` cfv 4592  (class class class)co 5710   supcsup 7077   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    x. cmul 8622   RR*cxr 8746    < clt 8747    <_ cle 8748    / cdiv 9303   2c2 9675   ^cexp 10982   abscabs 11596   ~Hchil 21329    .h csm 21331    .ih csp 21332   normhcno 21333   0hc0v 21334   normfncnmf 21361   bracbr 21366
This theorem is referenced by:  brabn  22516
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-cn 16789  df-cnp 16790  df-t1 16874  df-haus 16875  df-tx 17089  df-hmeo 17278  df-xms 17717  df-ms 17718  df-tms 17719  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ph 21221  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-nmfn 22255  df-lnfn 22258  df-bra 22260
  Copyright terms: Public domain W3C validator