HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Unicode version

Theorem branmfn 23561
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  (
normh `  A ) )

Proof of Theorem branmfn
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . 4  |-  ( A  =  0h  ->  ( bra `  A )  =  ( bra `  0h ) )
21fveq2d 5691 . . 3  |-  ( A  =  0h  ->  ( normfn `
 ( bra `  A
) )  =  (
normfn `  ( bra `  0h ) ) )
3 fveq2 5687 . . 3  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
42, 3eqeq12d 2418 . 2  |-  ( A  =  0h  ->  (
( normfn `  ( bra `  A ) )  =  ( normh `  A )  <->  (
normfn `  ( bra `  0h ) )  =  (
normh `  0h ) ) )
5 brafn 23403 . . . . 5  |-  ( A  e.  ~H  ->  ( bra `  A ) : ~H --> CC )
6 nmfnval 23332 . . . . 5  |-  ( ( bra `  A ) : ~H --> CC  ->  (
normfn `  ( bra `  A
) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
75, 6syl 16 . . . 4  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
87adantr 452 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  ( bra `  A ) )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
9 nmfnsetre 23333 . . . . . . . 8  |-  ( ( bra `  A ) : ~H --> CC  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } 
C_  RR )
105, 9syl 16 . . . . . . 7  |-  ( A  e.  ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR )
11 ressxr 9085 . . . . . . 7  |-  RR  C_  RR*
1210, 11syl6ss 3320 . . . . . 6  |-  ( A  e.  ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* )
13 normcl 22580 . . . . . . 7  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
1413rexrd 9090 . . . . . 6  |-  ( A  e.  ~H  ->  ( normh `  A )  e. 
RR* )
1512, 14jca 519 . . . . 5  |-  ( A  e.  ~H  ->  ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )
)
1615adantr 452 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )
)
17 vex 2919 . . . . . . . 8  |-  z  e. 
_V
18 eqeq1 2410 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  ( abs `  ( ( bra `  A
) `  y )
)  <->  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) )
1918anbi2d 685 . . . . . . . . 9  |-  ( x  =  z  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) ) )
2019rexbidv 2687 . . . . . . . 8  |-  ( x  =  z  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( abs `  ( ( bra `  A ) `  y
) ) ) ) )
2117, 20elab 3042 . . . . . . 7  |-  ( z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( abs `  ( ( bra `  A ) `  y
) ) ) )
22 id 20 . . . . . . . . . . . . 13  |-  ( z  =  ( abs `  (
( bra `  A
) `  y )
)  ->  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) )
23 braval 23400 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( bra `  A
) `  y )  =  ( y  .ih  A ) )
2423fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( bra `  A
) `  y )
)  =  ( abs `  ( y  .ih  A
) ) )
2524adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( ( bra `  A ) `  y
) )  =  ( abs `  ( y 
.ih  A ) ) )
2622, 25sylan9eqr 2458 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  z  =  ( abs `  (
y  .ih  A )
) )
27 bcs2 22637 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  A  e.  ~H  /\  ( normh `  y )  <_ 
1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
28273expa 1153 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ~H  /\  A  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
2928ancom1s 781 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
3029adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
3126, 30eqbrtrd 4192 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
)
3231exp41 594 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  (
y  e.  ~H  ->  ( ( normh `  y )  <_  1  ->  ( z  =  ( abs `  (
( bra `  A
) `  y )
)  ->  z  <_  (
normh `  A ) ) ) ) )
3332imp4a 573 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
y  e.  ~H  ->  ( ( ( normh `  y
)  <_  1  /\  z  =  ( abs `  ( ( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
) ) )
3433rexlimdv 2789 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  z  =  ( abs `  ( ( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
) )
3534imp 419 . . . . . . 7  |-  ( ( A  e.  ~H  /\  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) ) )  -> 
z  <_  ( normh `  A ) )
3621, 35sylan2b 462 . . . . . 6  |-  ( ( A  e.  ~H  /\  z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } )  ->  z  <_  ( normh `  A ) )
3736ralrimiva 2749 . . . . 5  |-  ( A  e.  ~H  ->  A. z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
) )
3837adantr 452 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
) )
3913recnd 9070 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  CC )
4039adantr 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
41 normne0 22585 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
4241biimpar 472 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
4340, 42reccld 9739 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
44 simpl 444 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
45 hvmulcl 22469 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
4643, 44, 45syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
47 norm1 22704 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
48 1le1 9606 . . . . . . . . . . . 12  |-  1  <_  1
4947, 48syl6eqbr 4209 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
50 ax-his3 22539 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H  /\  A  e. 
~H )  ->  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A )  =  ( ( 1  / 
( normh `  A )
)  x.  ( A 
.ih  A ) ) )
5143, 44, 44, 50syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )  =  ( ( 1  /  ( normh `  A
) )  x.  ( A  .ih  A ) ) )
5213adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
5352, 42rereccld 9797 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
54 hiidrcl 22550 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
5554adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( A  .ih  A
)  e.  RR )
5653, 55remulcld 9072 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( A 
.ih  A ) )  e.  RR )
5751, 56eqeltrd 2478 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )  e.  RR )
58 normgt0 22582 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
5958biimpa 471 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
6052, 59recgt0d 9901 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
61 0re 9047 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
62 ltle 9119 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
6361, 62mpan 652 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
6453, 60, 63sylc 58 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
65 hiidge0 22553 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
6665adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( A  .ih  A ) )
6753, 55, 64, 66mulge0d 9559 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( (
1  /  ( normh `  A ) )  x.  ( A  .ih  A
) ) )
6867, 51breqtrrd 4198 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( (
( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) )
6957, 68absidd 12180 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) )  =  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A
) )
7040, 42recid2d 9742 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( normh `  A ) )  =  1 )
7170oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( normh `  A )  x.  1 ) )
7240, 43, 40mul12d 9231 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( ( normh `  A )  x.  ( normh `  A ) ) ) )
7339sqvald 11475 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ~H  ->  (
( normh `  A ) ^ 2 )  =  ( ( normh `  A
)  x.  ( normh `  A ) ) )
74 normsq 22589 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ~H  ->  (
( normh `  A ) ^ 2 )  =  ( A  .ih  A
) )
7573, 74eqtr3d 2438 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  (
( normh `  A )  x.  ( normh `  A )
)  =  ( A 
.ih  A ) )
7675adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( normh `  A ) )  =  ( A  .ih  A
) )
7776oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( (
normh `  A )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( A  .ih  A ) ) )
7872, 77eqtrd 2436 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( A  .ih  A ) ) )
7939mulid1d 9061 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  (
( normh `  A )  x.  1 )  =  (
normh `  A ) )
8079adantr 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  1 )  =  ( normh `  A
) )
8171, 78, 803eqtr3rd 2445 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =  ( ( 1  /  ( normh `  A
) )  x.  ( A  .ih  A ) ) )
8251, 69, 813eqtr4rd 2447 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =  ( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) ) )
83 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( normh `  y )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) ) )
8483breq1d 4182 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( ( normh `  y )  <_ 
1  <->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 ) )
85 oveq1 6047 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( y  .ih  A )  =  ( ( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) )
8685fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( abs `  ( y  .ih  A
) )  =  ( abs `  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) ) )
8786eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( ( normh `  A )  =  ( abs `  (
y  .ih  A )
)  <->  ( normh `  A
)  =  ( abs `  ( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )
) ) )
8884, 87anbi12d 692 . . . . . . . . . . . 12  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( (
( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  ( y 
.ih  A ) ) )  <->  ( ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) ) ) ) )
8988rspcev 3012 . . . . . . . . . . 11  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  (
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) ) ) )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) )
9046, 49, 82, 89syl12anc 1182 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) )
9124eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  A
)  =  ( abs `  ( ( bra `  A
) `  y )
)  <->  ( normh `  A
)  =  ( abs `  ( y  .ih  A
) ) ) )
9291anbi2d 685 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( y 
.ih  A ) ) ) ) )
9392rexbidva 2683 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) ) )
9493adantr 452 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( E. y  e. 
~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) ) )
9590, 94mpbird 224 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) )
96 fvex 5701 . . . . . . . . . 10  |-  ( normh `  A )  e.  _V
97 eqeq1 2410 . . . . . . . . . . . 12  |-  ( x  =  ( normh `  A
)  ->  ( x  =  ( abs `  (
( bra `  A
) `  y )
)  <->  ( normh `  A
)  =  ( abs `  ( ( bra `  A
) `  y )
) ) )
9897anbi2d 685 . . . . . . . . . . 11  |-  ( x  =  ( normh `  A
)  ->  ( (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) ) )
9998rexbidv 2687 . . . . . . . . . 10  |-  ( x  =  ( normh `  A
)  ->  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) ) )
10096, 99elab 3042 . . . . . . . . 9  |-  ( (
normh `  A )  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) )
10195, 100sylibr 204 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } )
102 breq2 4176 . . . . . . . . 9  |-  ( w  =  ( normh `  A
)  ->  ( z  <  w  <->  z  <  ( normh `  A ) ) )
103102rspcev 3012 . . . . . . . 8  |-  ( ( ( normh `  A )  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  /\  z  <  ( normh `  A
) )  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <  w )
104101, 103sylan 458 . . . . . . 7  |-  ( ( ( A  e.  ~H  /\  A  =/=  0h )  /\  z  <  ( normh `  A ) )  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <  w )
105104adantlr 696 . . . . . 6  |-  ( ( ( ( A  e. 
~H  /\  A  =/=  0h )  /\  z  e.  RR )  /\  z  <  ( normh `  A )
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <  w )
106105ex 424 . . . . 5  |-  ( ( ( A  e.  ~H  /\  A  =/=  0h )  /\  z  e.  RR )  ->  ( z  < 
( normh `  A )  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } z  <  w ) )
107106ralrimiva 2749 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A. z  e.  RR  ( z  <  ( normh `  A )  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <  w ) )
108 supxr2 10848 . . . 4  |-  ( ( ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )  /\  ( A. z  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
)  /\  A. z  e.  RR  ( z  < 
( normh `  A )  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } z  <  w ) ) )  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  )  =  ( normh `  A )
)
10916, 38, 107, 108syl12anc 1182 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } ,  RR* ,  <  )  =  ( normh `  A )
)
1108, 109eqtrd 2436 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  ( bra `  A ) )  =  ( normh `  A )
)
111 nmfn0 23443 . . . 4  |-  ( normfn `  ( ~H  X.  {
0 } ) )  =  0
112 bra0 23406 . . . . 5  |-  ( bra `  0h )  =  ( ~H  X.  { 0 } )
113112fveq2i 5690 . . . 4  |-  ( normfn `  ( bra `  0h ) )  =  (
normfn `  ( ~H  X.  { 0 } ) )
114 norm0 22583 . . . 4  |-  ( normh `  0h )  =  0
115111, 113, 1143eqtr4i 2434 . . 3  |-  ( normfn `  ( bra `  0h ) )  =  (
normh `  0h )
116115a1i 11 . 2  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  0h ) )  =  (
normh `  0h ) )
1174, 110, 116pm2.61ne 2642 1  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  (
normh `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   {csn 3774   class class class wbr 4172    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    / cdiv 9633   2c2 10005   ^cexp 11337   abscabs 11994   ~Hchil 22375    .h csm 22377    .ih csp 22378   normhcno 22379   0hc0v 22380   normfncnmf 22407   bracbr 22412
This theorem is referenced by:  brabn  23562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026  ax-hilex 22455  ax-hfvadd 22456  ax-hvcom 22457  ax-hvass 22458  ax-hv0cl 22459  ax-hvaddid 22460  ax-hfvmul 22461  ax-hvmulid 22462  ax-hvmulass 22463  ax-hvdistr1 22464  ax-hvdistr2 22465  ax-hvmul0 22466  ax-hfi 22534  ax-his1 22537  ax-his2 22538  ax-his3 22539  ax-his4 22540
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-cn 17245  df-cnp 17246  df-t1 17332  df-haus 17333  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-grpo 21732  df-gid 21733  df-ginv 21734  df-gdiv 21735  df-ablo 21823  df-vc 21978  df-nv 22024  df-va 22027  df-ba 22028  df-sm 22029  df-0v 22030  df-vs 22031  df-nmcv 22032  df-ims 22033  df-dip 22150  df-ph 22267  df-hnorm 22424  df-hba 22425  df-hvsub 22427  df-nmfn 23301  df-lnfn 23304  df-bra 23306
  Copyright terms: Public domain W3C validator