Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabsb Structured version   Unicode version

Theorem brabsb 4709
 Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1
Assertion
Ref Expression
brabsb
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 4402 . 2
2 brabsb.1 . . 3
32eleq2i 2532 . 2
4 opelopabsb 4708 . 2
51, 3, 43bitri 271 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wceq 1370   wcel 1758  wsbc 3294  cop 3992   class class class wbr 4401  copab 4458 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-br 4402  df-opab 4460 This theorem is referenced by:  eqerlem  7244
 Copyright terms: Public domain W3C validator