Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabg2 Structured version   Unicode version

Theorem brabg2 30181
 Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
brabg2.1
brabg2.2
brabg2.3
brabg2.4
Assertion
Ref Expression
brabg2
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)   (,)   (,)

Proof of Theorem brabg2
StepHypRef Expression
1 brabg2.3 . . . . 5
21relopabi 5118 . . . 4
32brrelexi 5030 . . 3
4 brabg2.1 . . . . . . 7
5 brabg2.2 . . . . . . 7
64, 5, 1brabg 4756 . . . . . 6
76biimpd 207 . . . . 5
87ex 434 . . . 4
98com3l 81 . . 3
103, 9mpdi 42 . 2
11 brabg2.4 . . 3
124, 5, 1brabg 4756 . . . . 5
1312exbiri 622 . . . 4
1413com3l 81 . . 3
1511, 14mpdi 42 . 2
1610, 15impbid 191 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1383   wcel 1804  cvv 3095   class class class wbr 4437  copab 4494 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-br 4438  df-opab 4496  df-xp 4995  df-rel 4996 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator