MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Structured version   Visualization version   Unicode version

Theorem brabg 4720
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
brabg.5  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
Distinct variable groups:    x, y, A    x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    C( x, y)    D( x, y)    R( x, y)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 opelopabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
31, 2sylan9bb 706 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch )
)
4 brabg.5 . 2  |-  R  =  { <. x ,  y
>.  |  ph }
53, 4brabga 4715 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   class class class wbr 4402   {copab 4460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-br 4403  df-opab 4462
This theorem is referenced by:  brab  4724  ideqg  4986  opelcnvg  5014  f1owe  6244  brrpssg  6573  bren  7578  brdomg  7579  brwdom  8082  ltprord  9455  shftfib  13135  efgrelexlema  17399  isref  20524  istrkgld  24507  islnopp  24781  axcontlem5  24998  isfrgra  25718  cmbr  27237  leopg  27775  cvbr  27935  mdbr  27947  dmdbr  27952  soseq  30492  sltval  30534  isfne  30995  brabg2  32042  isriscg  32223  lcvbr  32587
  Copyright terms: Public domain W3C validator