MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab Structured version   Unicode version

Theorem brab 4711
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
Hypotheses
Ref Expression
opelopab.1  |-  A  e. 
_V
opelopab.2  |-  B  e. 
_V
opelopab.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopab.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
brab.5  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brab  |-  ( A R B  <->  ch )
Distinct variable groups:    x, y, A    x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    R( x, y)

Proof of Theorem brab
StepHypRef Expression
1 opelopab.1 . 2  |-  A  e. 
_V
2 opelopab.2 . 2  |-  B  e. 
_V
3 opelopab.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 opelopab.4 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
5 brab.5 . . 3  |-  R  =  { <. x ,  y
>.  |  ph }
63, 4, 5brabg 4708 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A R B  <->  ch ) )
71, 2, 6mp2an 672 1  |-  ( A R B  <->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   _Vcvv 3070   class class class wbr 4392   {copab 4449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-rab 2804  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-br 4393  df-opab 4451
This theorem is referenced by:  opbrop  5016  f1oweALT  6663  frxp  6784  fnwelem  6789  dftpos4  6866  dfac3  8394  axdc2lem  8720  brdom7disj  8801  brdom6disj  8802  ordpipq  9214  ltresr  9410  shftfn  12666  2shfti  12673  brcgr  23283  ex-opab  23776  br8d  26078  br8  27702  br6  27703  br4  27704  poseq  27850  dfbigcup2  28066  brsegle  28275  heiborlem2  28851
  Copyright terms: Public domain W3C validator