MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem7 Unicode version

Theorem bposlem7 21027
Description: Lemma for bpos 21030. The function  F is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bposlem7.1  |-  F  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  n ) ) ) ) )
bposlem7.2  |-  G  =  ( x  e.  RR+  |->  ( ( log `  x
)  /  x ) )
bposlem7.3  |-  ( ph  ->  A  e.  NN )
bposlem7.4  |-  ( ph  ->  B  e.  NN )
bposlem7.5  |-  ( ph  ->  ( _e ^ 2 )  <_  A )
bposlem7.6  |-  ( ph  ->  ( _e ^ 2 )  <_  B )
Assertion
Ref Expression
bposlem7  |-  ( ph  ->  ( A  <  B  ->  ( F `  B
)  <  ( F `  A ) ) )
Distinct variable groups:    A, n    B, n    n, G    x, A    x, B
Allowed substitution hints:    ph( x, n)    F( x, n)    G( x)

Proof of Theorem bposlem7
StepHypRef Expression
1 bposlem7.4 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  NN )
21nnrpd 10603 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
32rpsqrcld 12169 . . . . . . . . . . 11  |-  ( ph  ->  ( sqr `  B
)  e.  RR+ )
4 fveq2 5687 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  B
)  ->  ( log `  x )  =  ( log `  ( sqr `  B ) ) )
5 id 20 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  B
)  ->  x  =  ( sqr `  B ) )
64, 5oveq12d 6058 . . . . . . . . . . . 12  |-  ( x  =  ( sqr `  B
)  ->  ( ( log `  x )  /  x )  =  ( ( log `  ( sqr `  B ) )  /  ( sqr `  B
) ) )
7 bposlem7.2 . . . . . . . . . . . 12  |-  G  =  ( x  e.  RR+  |->  ( ( log `  x
)  /  x ) )
8 ovex 6065 . . . . . . . . . . . 12  |-  ( ( log `  ( sqr `  B ) )  / 
( sqr `  B
) )  e.  _V
96, 7, 8fvmpt 5765 . . . . . . . . . . 11  |-  ( ( sqr `  B )  e.  RR+  ->  ( G `
 ( sqr `  B
) )  =  ( ( log `  ( sqr `  B ) )  /  ( sqr `  B
) ) )
103, 9syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G `  ( sqr `  B ) )  =  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) ) )
11 bposlem7.3 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  NN )
1211nnrpd 10603 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
1312rpsqrcld 12169 . . . . . . . . . . 11  |-  ( ph  ->  ( sqr `  A
)  e.  RR+ )
14 fveq2 5687 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  A
)  ->  ( log `  x )  =  ( log `  ( sqr `  A ) ) )
15 id 20 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  A
)  ->  x  =  ( sqr `  A ) )
1614, 15oveq12d 6058 . . . . . . . . . . . 12  |-  ( x  =  ( sqr `  A
)  ->  ( ( log `  x )  /  x )  =  ( ( log `  ( sqr `  A ) )  /  ( sqr `  A
) ) )
17 ovex 6065 . . . . . . . . . . . 12  |-  ( ( log `  ( sqr `  A ) )  / 
( sqr `  A
) )  e.  _V
1816, 7, 17fvmpt 5765 . . . . . . . . . . 11  |-  ( ( sqr `  A )  e.  RR+  ->  ( G `
 ( sqr `  A
) )  =  ( ( log `  ( sqr `  A ) )  /  ( sqr `  A
) ) )
1913, 18syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G `  ( sqr `  A ) )  =  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) )
2010, 19breq12d 4185 . . . . . . . . 9  |-  ( ph  ->  ( ( G `  ( sqr `  B ) )  <  ( G `
 ( sqr `  A
) )  <->  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) )  <  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) ) )
2113rpred 10604 . . . . . . . . . 10  |-  ( ph  ->  ( sqr `  A
)  e.  RR )
22 bposlem7.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e ^ 2 )  <_  A )
2312rprege0d 10611 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A )
)
24 resqrth 12016 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
2523, 24syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( sqr `  A
) ^ 2 )  =  A )
2622, 25breqtrrd 4198 . . . . . . . . . . 11  |-  ( ph  ->  ( _e ^ 2 )  <_  ( ( sqr `  A ) ^
2 ) )
2713rpge0d 10608 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( sqr `  A ) )
28 ere 12646 . . . . . . . . . . . . 13  |-  _e  e.  RR
29 0re 9047 . . . . . . . . . . . . . 14  |-  0  e.  RR
30 epos 12761 . . . . . . . . . . . . . 14  |-  0  <  _e
3129, 28, 30ltleii 9152 . . . . . . . . . . . . 13  |-  0  <_  _e
32 le2sq 11411 . . . . . . . . . . . . 13  |-  ( ( ( _e  e.  RR  /\  0  <_  _e )  /\  ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) ) )  -> 
( _e  <_  ( sqr `  A )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  A
) ^ 2 ) ) )
3328, 31, 32mpanl12 664 . . . . . . . . . . . 12  |-  ( ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) )  ->  (
_e  <_  ( sqr `  A
)  <->  ( _e ^
2 )  <_  (
( sqr `  A
) ^ 2 ) ) )
3421, 27, 33syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  <_  ( sqr `  A )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  A
) ^ 2 ) ) )
3526, 34mpbird 224 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( sqr `  A ) )
363rpred 10604 . . . . . . . . . 10  |-  ( ph  ->  ( sqr `  B
)  e.  RR )
37 bposlem7.6 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e ^ 2 )  <_  B )
382rprege0d 10611 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B )
)
39 resqrth 12016 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
( ( sqr `  B
) ^ 2 )  =  B )
4038, 39syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( sqr `  B
) ^ 2 )  =  B )
4137, 40breqtrrd 4198 . . . . . . . . . . 11  |-  ( ph  ->  ( _e ^ 2 )  <_  ( ( sqr `  B ) ^
2 ) )
423rpge0d 10608 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( sqr `  B ) )
43 le2sq 11411 . . . . . . . . . . . . 13  |-  ( ( ( _e  e.  RR  /\  0  <_  _e )  /\  ( ( sqr `  B
)  e.  RR  /\  0  <_  ( sqr `  B
) ) )  -> 
( _e  <_  ( sqr `  B )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  B
) ^ 2 ) ) )
4428, 31, 43mpanl12 664 . . . . . . . . . . . 12  |-  ( ( ( sqr `  B
)  e.  RR  /\  0  <_  ( sqr `  B
) )  ->  (
_e  <_  ( sqr `  B
)  <->  ( _e ^
2 )  <_  (
( sqr `  B
) ^ 2 ) ) )
4536, 42, 44syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  <_  ( sqr `  B )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  B
) ^ 2 ) ) )
4641, 45mpbird 224 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( sqr `  B ) )
47 logdivlt 20469 . . . . . . . . . 10  |-  ( ( ( ( sqr `  A
)  e.  RR  /\  _e  <_  ( sqr `  A
) )  /\  (
( sqr `  B
)  e.  RR  /\  _e  <_  ( sqr `  B
) ) )  -> 
( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) )  <  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) ) )
4821, 35, 36, 46, 47syl22anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) )  <  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) ) )
4921, 36, 27, 42lt2sqd 11512 . . . . . . . . 9  |-  ( ph  ->  ( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( sqr `  A ) ^
2 )  <  (
( sqr `  B
) ^ 2 ) ) )
5020, 48, 493bitr2rd 274 . . . . . . . 8  |-  ( ph  ->  ( ( ( sqr `  A ) ^ 2 )  <  ( ( sqr `  B ) ^ 2 )  <->  ( G `  ( sqr `  B
) )  <  ( G `  ( sqr `  A ) ) ) )
5125, 40breq12d 4185 . . . . . . . 8  |-  ( ph  ->  ( ( ( sqr `  A ) ^ 2 )  <  ( ( sqr `  B ) ^ 2 )  <->  A  <  B ) )
52 relogcl 20426 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
53 rerpdivcl 10595 . . . . . . . . . . . . 13  |-  ( ( ( log `  x
)  e.  RR  /\  x  e.  RR+ )  -> 
( ( log `  x
)  /  x )  e.  RR )
5452, 53mpancom 651 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log `  x )  /  x )  e.  RR )
557, 54fmpti 5851 . . . . . . . . . . 11  |-  G : RR+
--> RR
5655ffvelrni 5828 . . . . . . . . . 10  |-  ( ( sqr `  B )  e.  RR+  ->  ( G `
 ( sqr `  B
) )  e.  RR )
573, 56syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( sqr `  B ) )  e.  RR )
5855ffvelrni 5828 . . . . . . . . . 10  |-  ( ( sqr `  A )  e.  RR+  ->  ( G `
 ( sqr `  A
) )  e.  RR )
5913, 58syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( sqr `  A ) )  e.  RR )
60 2rp 10573 . . . . . . . . . 10  |-  2  e.  RR+
61 rpsqrcl 12025 . . . . . . . . . 10  |-  ( 2  e.  RR+  ->  ( sqr `  2 )  e.  RR+ )
6260, 61mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( sqr `  2
)  e.  RR+ )
6357, 59, 62ltmul2d 10642 . . . . . . . 8  |-  ( ph  ->  ( ( G `  ( sqr `  B ) )  <  ( G `
 ( sqr `  A
) )  <->  ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  <  ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) ) ) )
6450, 51, 633bitr3d 275 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  < 
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) ) ) )
6564biimpd 199 . . . . . 6  |-  ( ph  ->  ( A  <  B  ->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  < 
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) ) ) )
6611nnred 9971 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
671nnred 9971 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
68 2re 10025 . . . . . . . . . . . 12  |-  2  e.  RR
69 2pos 10038 . . . . . . . . . . . 12  |-  0  <  2
7068, 69pm3.2i 442 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
7170a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
72 ltdiv1 9830 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
B  <->  ( A  / 
2 )  <  ( B  /  2 ) ) )
7366, 67, 71, 72syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( A  <  B  <->  ( A  /  2 )  <  ( B  / 
2 ) ) )
7412rphalfcld 10616 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  2
)  e.  RR+ )
7574rpred 10604 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  2
)  e.  RR )
7628, 68remulcli 9060 . . . . . . . . . . . . 13  |-  ( _e  x.  2 )  e.  RR
7776a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e  x.  2 )  e.  RR )
7828resqcli 11422 . . . . . . . . . . . . 13  |-  ( _e
^ 2 )  e.  RR
7978a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e ^ 2 )  e.  RR )
80 egt2lt3 12760 . . . . . . . . . . . . . . . . 17  |-  ( 2  <  _e  /\  _e  <  3 )
8180simpli 445 . . . . . . . . . . . . . . . 16  |-  2  <  _e
8268, 28, 81ltleii 9152 . . . . . . . . . . . . . . 15  |-  2  <_  _e
8368, 28, 28lemul2i 9890 . . . . . . . . . . . . . . . 16  |-  ( 0  <  _e  ->  (
2  <_  _e  <->  ( _e  x.  2 )  <_  (
_e  x.  _e )
) )
8430, 83ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( 2  <_  _e  <->  ( _e  x.  2 )  <_  (
_e  x.  _e )
)
8582, 84mpbi 200 . . . . . . . . . . . . . 14  |-  ( _e  x.  2 )  <_ 
( _e  x.  _e )
8628recni 9058 . . . . . . . . . . . . . . 15  |-  _e  e.  CC
8786sqvali 11416 . . . . . . . . . . . . . 14  |-  ( _e
^ 2 )  =  ( _e  x.  _e )
8885, 87breqtrri 4197 . . . . . . . . . . . . 13  |-  ( _e  x.  2 )  <_ 
( _e ^ 2 )
8988a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e  x.  2 )  <_  ( _e ^ 2 ) )
9077, 79, 66, 89, 22letrd 9183 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  x.  2 )  <_  A )
91 lemuldiv 9845 . . . . . . . . . . . . 13  |-  ( ( _e  e.  RR  /\  A  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( _e  x.  2 )  <_  A 
<->  _e  <_  ( A  /  2 ) ) )
9228, 70, 91mp3an13 1270 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( _e  x.  2 )  <_  A  <->  _e  <_  ( A  /  2 ) ) )
9366, 92syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( _e  x.  2 )  <_  A  <->  _e 
<_  ( A  /  2
) ) )
9490, 93mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( A  /  2 ) )
952rphalfcld 10616 . . . . . . . . . . 11  |-  ( ph  ->  ( B  /  2
)  e.  RR+ )
9695rpred 10604 . . . . . . . . . 10  |-  ( ph  ->  ( B  /  2
)  e.  RR )
9777, 79, 67, 89, 37letrd 9183 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  x.  2 )  <_  B )
98 lemuldiv 9845 . . . . . . . . . . . . 13  |-  ( ( _e  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( _e  x.  2 )  <_  B 
<->  _e  <_  ( B  /  2 ) ) )
9928, 70, 98mp3an13 1270 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( _e  x.  2 )  <_  B  <->  _e  <_  ( B  /  2 ) ) )
10067, 99syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( _e  x.  2 )  <_  B  <->  _e 
<_  ( B  /  2
) ) )
10197, 100mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( B  /  2 ) )
102 logdivlt 20469 . . . . . . . . . 10  |-  ( ( ( ( A  / 
2 )  e.  RR  /\  _e  <_  ( A  /  2 ) )  /\  ( ( B  /  2 )  e.  RR  /\  _e  <_  ( B  /  2 ) ) )  ->  (
( A  /  2
)  <  ( B  /  2 )  <->  ( ( log `  ( B  / 
2 ) )  / 
( B  /  2
) )  <  (
( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
10375, 94, 96, 101, 102syl22anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( A  / 
2 )  <  ( B  /  2 )  <->  ( ( log `  ( B  / 
2 ) )  / 
( B  /  2
) )  <  (
( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
10473, 103bitrd 245 . . . . . . . 8  |-  ( ph  ->  ( A  <  B  <->  ( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) )  < 
( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
105 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  ( B  / 
2 )  ->  ( log `  x )  =  ( log `  ( B  /  2 ) ) )
106 id 20 . . . . . . . . . . . 12  |-  ( x  =  ( B  / 
2 )  ->  x  =  ( B  / 
2 ) )
107105, 106oveq12d 6058 . . . . . . . . . . 11  |-  ( x  =  ( B  / 
2 )  ->  (
( log `  x
)  /  x )  =  ( ( log `  ( B  /  2
) )  /  ( B  /  2 ) ) )
108 ovex 6065 . . . . . . . . . . 11  |-  ( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) )  e. 
_V
109107, 7, 108fvmpt 5765 . . . . . . . . . 10  |-  ( ( B  /  2 )  e.  RR+  ->  ( G `
 ( B  / 
2 ) )  =  ( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) ) )
11095, 109syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( B  /  2 ) )  =  ( ( log `  ( B  /  2
) )  /  ( B  /  2 ) ) )
111 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  ( A  / 
2 )  ->  ( log `  x )  =  ( log `  ( A  /  2 ) ) )
112 id 20 . . . . . . . . . . . 12  |-  ( x  =  ( A  / 
2 )  ->  x  =  ( A  / 
2 ) )
113111, 112oveq12d 6058 . . . . . . . . . . 11  |-  ( x  =  ( A  / 
2 )  ->  (
( log `  x
)  /  x )  =  ( ( log `  ( A  /  2
) )  /  ( A  /  2 ) ) )
114 ovex 6065 . . . . . . . . . . 11  |-  ( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) )  e. 
_V
115113, 7, 114fvmpt 5765 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  RR+  ->  ( G `
 ( A  / 
2 ) )  =  ( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) )
11674, 115syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( A  /  2 ) )  =  ( ( log `  ( A  /  2
) )  /  ( A  /  2 ) ) )
117110, 116breq12d 4185 . . . . . . . 8  |-  ( ph  ->  ( ( G `  ( B  /  2
) )  <  ( G `  ( A  /  2 ) )  <-> 
( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) )  < 
( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
11855ffvelrni 5828 . . . . . . . . . 10  |-  ( ( B  /  2 )  e.  RR+  ->  ( G `
 ( B  / 
2 ) )  e.  RR )
11995, 118syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( B  /  2 ) )  e.  RR )
12055ffvelrni 5828 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  RR+  ->  ( G `
 ( A  / 
2 ) )  e.  RR )
12174, 120syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( A  /  2 ) )  e.  RR )
122 9nn 10096 . . . . . . . . . . 11  |-  9  e.  NN
123 4nn 10091 . . . . . . . . . . 11  |-  4  e.  NN
124 nnrp 10577 . . . . . . . . . . . 12  |-  ( 9  e.  NN  ->  9  e.  RR+ )
125 nnrp 10577 . . . . . . . . . . . 12  |-  ( 4  e.  NN  ->  4  e.  RR+ )
126 rpdivcl 10590 . . . . . . . . . . . 12  |-  ( ( 9  e.  RR+  /\  4  e.  RR+ )  ->  (
9  /  4 )  e.  RR+ )
127124, 125, 126syl2an 464 . . . . . . . . . . 11  |-  ( ( 9  e.  NN  /\  4  e.  NN )  ->  ( 9  /  4
)  e.  RR+ )
128122, 123, 127mp2an 654 . . . . . . . . . 10  |-  ( 9  /  4 )  e.  RR+
129128a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 9  /  4
)  e.  RR+ )
130119, 121, 129ltmul2d 10642 . . . . . . . 8  |-  ( ph  ->  ( ( G `  ( B  /  2
) )  <  ( G `  ( A  /  2 ) )  <-> 
( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) ) )
131104, 117, 1303bitr2d 273 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2 ) ) ) ) )
132131biimpd 199 . . . . . 6  |-  ( ph  ->  ( A  <  B  ->  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) ) )
13365, 132jcad 520 . . . . 5  |-  ( ph  ->  ( A  <  B  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  <  ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  /\  (
( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2 ) ) ) ) ) )
134 sqr2re 12804 . . . . . . 7  |-  ( sqr `  2 )  e.  RR
135 remulcl 9031 . . . . . . 7  |-  ( ( ( sqr `  2
)  e.  RR  /\  ( G `  ( sqr `  B ) )  e.  RR )  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  e.  RR )
136134, 57, 135sylancr 645 . . . . . 6  |-  ( ph  ->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  e.  RR )
137 9re 10035 . . . . . . . 8  |-  9  e.  RR
138 4re 10029 . . . . . . . 8  |-  4  e.  RR
139123nnne0i 9990 . . . . . . . 8  |-  4  =/=  0
140137, 138, 139redivcli 9737 . . . . . . 7  |-  ( 9  /  4 )  e.  RR
141 remulcl 9031 . . . . . . 7  |-  ( ( ( 9  /  4
)  e.  RR  /\  ( G `  ( B  /  2 ) )  e.  RR )  -> 
( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  e.  RR )
142140, 119, 141sylancr 645 . . . . . 6  |-  ( ph  ->  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  e.  RR )
143 remulcl 9031 . . . . . . 7  |-  ( ( ( sqr `  2
)  e.  RR  /\  ( G `  ( sqr `  A ) )  e.  RR )  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  e.  RR )
144134, 59, 143sylancr 645 . . . . . 6  |-  ( ph  ->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  e.  RR )
145 remulcl 9031 . . . . . . 7  |-  ( ( ( 9  /  4
)  e.  RR  /\  ( G `  ( A  /  2 ) )  e.  RR )  -> 
( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) )  e.  RR )
146140, 121, 145sylancr 645 . . . . . 6  |-  ( ph  ->  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) )  e.  RR )
147 lt2add 9469 . . . . . 6  |-  ( ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  e.  RR  /\  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  e.  RR )  /\  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  e.  RR  /\  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) )  e.  RR ) )  ->  ( (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  < 
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  /\  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  <  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) ) ) )
148136, 142, 144, 146, 147syl22anc 1185 . . . . 5  |-  ( ph  ->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  <  (
( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  /\  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  <  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) ) ) )
149133, 148syld 42 . . . 4  |-  ( ph  ->  ( A  <  B  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( B  /  2
) ) ) )  <  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) ) ) )
150 ltmul2 9817 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
B  <->  ( 2  x.  A )  <  (
2  x.  B ) ) )
15166, 67, 71, 150syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( A  <  B  <->  ( 2  x.  A )  <  ( 2  x.  B ) ) )
152 rpmulcl 10589 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  A  e.  RR+ )  ->  (
2  x.  A )  e.  RR+ )
15360, 12, 152sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  A
)  e.  RR+ )
154153rpsqrcld 12169 . . . . . . . 8  |-  ( ph  ->  ( sqr `  (
2  x.  A ) )  e.  RR+ )
155 rpmulcl 10589 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  B  e.  RR+ )  ->  (
2  x.  B )  e.  RR+ )
15660, 2, 155sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  B
)  e.  RR+ )
157156rpsqrcld 12169 . . . . . . . 8  |-  ( ph  ->  ( sqr `  (
2  x.  B ) )  e.  RR+ )
158 rprege0 10582 . . . . . . . . 9  |-  ( ( sqr `  ( 2  x.  A ) )  e.  RR+  ->  ( ( sqr `  ( 2  x.  A ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  A ) ) ) )
159 rprege0 10582 . . . . . . . . 9  |-  ( ( sqr `  ( 2  x.  B ) )  e.  RR+  ->  ( ( sqr `  ( 2  x.  B ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  B ) ) ) )
160 lt2sq 11410 . . . . . . . . 9  |-  ( ( ( ( sqr `  (
2  x.  A ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  A ) ) )  /\  (
( sqr `  (
2  x.  B ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  B ) ) ) )  -> 
( ( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) )  <->  ( ( sqr `  ( 2  x.  A ) ) ^
2 )  <  (
( sqr `  (
2  x.  B ) ) ^ 2 ) ) )
161158, 159, 160syl2an 464 . . . . . . . 8  |-  ( ( ( sqr `  (
2  x.  A ) )  e.  RR+  /\  ( sqr `  ( 2  x.  B ) )  e.  RR+ )  ->  ( ( sqr `  ( 2  x.  A ) )  <  ( sqr `  (
2  x.  B ) )  <->  ( ( sqr `  ( 2  x.  A
) ) ^ 2 )  <  ( ( sqr `  ( 2  x.  B ) ) ^ 2 ) ) )
162154, 157, 161syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) )  <->  ( ( sqr `  ( 2  x.  A ) ) ^
2 )  <  (
( sqr `  (
2  x.  B ) ) ^ 2 ) ) )
163153rprege0d 10611 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  A )  e.  RR  /\  0  <_  ( 2  x.  A ) ) )
164 resqrth 12016 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  RR  /\  0  <_  ( 2  x.  A ) )  -> 
( ( sqr `  (
2  x.  A ) ) ^ 2 )  =  ( 2  x.  A ) )
165163, 164syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( sqr `  (
2  x.  A ) ) ^ 2 )  =  ( 2  x.  A ) )
166156rprege0d 10611 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  B )  e.  RR  /\  0  <_  ( 2  x.  B ) ) )
167 resqrth 12016 . . . . . . . . 9  |-  ( ( ( 2  x.  B
)  e.  RR  /\  0  <_  ( 2  x.  B ) )  -> 
( ( sqr `  (
2  x.  B ) ) ^ 2 )  =  ( 2  x.  B ) )
168166, 167syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( sqr `  (
2  x.  B ) ) ^ 2 )  =  ( 2  x.  B ) )
169165, 168breq12d 4185 . . . . . . 7  |-  ( ph  ->  ( ( ( sqr `  ( 2  x.  A
) ) ^ 2 )  <  ( ( sqr `  ( 2  x.  B ) ) ^ 2 )  <->  ( 2  x.  A )  < 
( 2  x.  B
) ) )
170162, 169bitr2d 246 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  A )  <  (
2  x.  B )  <-> 
( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) ) ) )
171 1lt2 10098 . . . . . . . . 9  |-  1  <  2
172 rplogcl 20452 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
17368, 171, 172mp2an 654 . . . . . . . 8  |-  ( log `  2 )  e.  RR+
174173a1i 11 . . . . . . 7  |-  ( ph  ->  ( log `  2
)  e.  RR+ )
175154, 157, 174ltdiv2d 10627 . . . . . 6  |-  ( ph  ->  ( ( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) )  <->  ( ( log `  2 )  / 
( sqr `  (
2  x.  B ) ) )  <  (
( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
176151, 170, 1753bitrd 271 . . . . 5  |-  ( ph  ->  ( A  <  B  <->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
177176biimpd 199 . . . 4  |-  ( ph  ->  ( A  <  B  ->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
178149, 177jcad 520 . . 3  |-  ( ph  ->  ( A  <  B  ->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  <  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) ) )
179136, 142readdcld 9071 . . . 4  |-  ( ph  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( B  /  2
) ) ) )  e.  RR )
180 rpre 10574 . . . . . 6  |-  ( ( log `  2 )  e.  RR+  ->  ( log `  2 )  e.  RR )
181173, 180ax-mp 8 . . . . 5  |-  ( log `  2 )  e.  RR
182 rerpdivcl 10595 . . . . 5  |-  ( ( ( log `  2
)  e.  RR  /\  ( sqr `  ( 2  x.  B ) )  e.  RR+ )  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  e.  RR )
183181, 157, 182sylancr 645 . . . 4  |-  ( ph  ->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  e.  RR )
184144, 146readdcld 9071 . . . 4  |-  ( ph  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  e.  RR )
185 rerpdivcl 10595 . . . . 5  |-  ( ( ( log `  2
)  e.  RR  /\  ( sqr `  ( 2  x.  A ) )  e.  RR+ )  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) )  e.  RR )
186181, 154, 185sylancr 645 . . . 4  |-  ( ph  ->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) )  e.  RR )
187 lt2add 9469 . . . 4  |-  ( ( ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  e.  RR  /\  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  e.  RR )  /\  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  e.  RR  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) )  e.  RR ) )  -> 
( ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  <  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )  ->  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )  <  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) ) )
188179, 183, 184, 186, 187syl22anc 1185 . . 3  |-  ( ph  ->  ( ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  <  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )  ->  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )  <  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) ) )
189178, 188syld 42 . 2  |-  ( ph  ->  ( A  <  B  ->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  B ) ) ) )  < 
( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  A ) ) ) ) ) )
190 fveq2 5687 . . . . . . . . 9  |-  ( n  =  B  ->  ( sqr `  n )  =  ( sqr `  B
) )
191190fveq2d 5691 . . . . . . . 8  |-  ( n  =  B  ->  ( G `  ( sqr `  n ) )  =  ( G `  ( sqr `  B ) ) )
192191oveq2d 6056 . . . . . . 7  |-  ( n  =  B  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  =  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) ) )
193 oveq1 6047 . . . . . . . . 9  |-  ( n  =  B  ->  (
n  /  2 )  =  ( B  / 
2 ) )
194193fveq2d 5691 . . . . . . . 8  |-  ( n  =  B  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( B  /  2
) ) )
195194oveq2d 6056 . . . . . . 7  |-  ( n  =  B  ->  (
( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) )  =  ( ( 9  /  4 )  x.  ( G `  ( B  /  2 ) ) ) )
196192, 195oveq12d 6058 . . . . . 6  |-  ( n  =  B  ->  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( n  /  2 ) ) ) )  =  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) ) )
197 oveq2 6048 . . . . . . . 8  |-  ( n  =  B  ->  (
2  x.  n )  =  ( 2  x.  B ) )
198197fveq2d 5691 . . . . . . 7  |-  ( n  =  B  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  B ) ) )
199198oveq2d 6056 . . . . . 6  |-  ( n  =  B  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) )  =  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )
200196, 199oveq12d 6058 . . . . 5  |-  ( n  =  B  ->  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( n  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  n ) ) ) )  =  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  B ) ) ) ) )
201 bposlem7.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  n ) ) ) ) )
202 ovex 6065 . . . . 5  |-  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )  e.  _V
203200, 201, 202fvmpt 5765 . . . 4  |-  ( B  e.  NN  ->  ( F `  B )  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) ) )
2041, 203syl 16 . . 3  |-  ( ph  ->  ( F `  B
)  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) ) )
205 fveq2 5687 . . . . . . . . 9  |-  ( n  =  A  ->  ( sqr `  n )  =  ( sqr `  A
) )
206205fveq2d 5691 . . . . . . . 8  |-  ( n  =  A  ->  ( G `  ( sqr `  n ) )  =  ( G `  ( sqr `  A ) ) )
207206oveq2d 6056 . . . . . . 7  |-  ( n  =  A  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  =  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) ) )
208 oveq1 6047 . . . . . . . . 9  |-  ( n  =  A  ->  (
n  /  2 )  =  ( A  / 
2 ) )
209208fveq2d 5691 . . . . . . . 8  |-  ( n  =  A  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( A  /  2
) ) )
210209oveq2d 6056 . . . . . . 7  |-  ( n  =  A  ->  (
( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) )  =  ( ( 9  /  4 )  x.  ( G `  ( A  /  2 ) ) ) )
211207, 210oveq12d 6058 . . . . . 6  |-  ( n  =  A  ->  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( n  /  2 ) ) ) )  =  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) ) )
212 oveq2 6048 . . . . . . . 8  |-  ( n  =  A  ->  (
2  x.  n )  =  ( 2  x.  A ) )
213212fveq2d 5691 . . . . . . 7  |-  ( n  =  A  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  A ) ) )
214213oveq2d 6056 . . . . . 6  |-  ( n  =  A  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) )  =  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )
215211, 214oveq12d 6058 . . . . 5  |-  ( n  =  A  ->  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( n  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  n ) ) ) )  =  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  A ) ) ) ) )
216 ovex 6065 . . . . 5  |-  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )  e.  _V
217215, 201, 216fvmpt 5765 . . . 4  |-  ( A  e.  NN  ->  ( F `  A )  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
21811, 217syl 16 . . 3  |-  ( ph  ->  ( F `  A
)  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
219204, 218breq12d 4185 . 2  |-  ( ph  ->  ( ( F `  B )  <  ( F `  A )  <->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( B  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  B ) ) ) )  < 
( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  A ) ) ) ) ) )
220189, 219sylibrd 226 1  |-  ( ph  ->  ( A  <  B  ->  ( F `  B
)  <  ( F `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   4c4 10007   9c9 10012   RR+crp 10568   ^cexp 11337   sqrcsqr 11993   _eceu 12620   logclog 20405
This theorem is referenced by:  bposlem9  21029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-e 12626  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407
  Copyright terms: Public domain W3C validator