MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem7 Structured version   Unicode version

Theorem bposlem7 22629
Description: Lemma for bpos 22632. The function  F is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bposlem7.1  |-  F  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  n ) ) ) ) )
bposlem7.2  |-  G  =  ( x  e.  RR+  |->  ( ( log `  x
)  /  x ) )
bposlem7.3  |-  ( ph  ->  A  e.  NN )
bposlem7.4  |-  ( ph  ->  B  e.  NN )
bposlem7.5  |-  ( ph  ->  ( _e ^ 2 )  <_  A )
bposlem7.6  |-  ( ph  ->  ( _e ^ 2 )  <_  B )
Assertion
Ref Expression
bposlem7  |-  ( ph  ->  ( A  <  B  ->  ( F `  B
)  <  ( F `  A ) ) )
Distinct variable groups:    A, n    B, n    n, G    x, A    x, B
Allowed substitution hints:    ph( x, n)    F( x, n)    G( x)

Proof of Theorem bposlem7
StepHypRef Expression
1 bposlem7.4 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  NN )
21nnrpd 11026 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
32rpsqrcld 12898 . . . . . . . . . . 11  |-  ( ph  ->  ( sqr `  B
)  e.  RR+ )
4 fveq2 5691 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  B
)  ->  ( log `  x )  =  ( log `  ( sqr `  B ) ) )
5 id 22 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  B
)  ->  x  =  ( sqr `  B ) )
64, 5oveq12d 6109 . . . . . . . . . . . 12  |-  ( x  =  ( sqr `  B
)  ->  ( ( log `  x )  /  x )  =  ( ( log `  ( sqr `  B ) )  /  ( sqr `  B
) ) )
7 bposlem7.2 . . . . . . . . . . . 12  |-  G  =  ( x  e.  RR+  |->  ( ( log `  x
)  /  x ) )
8 ovex 6116 . . . . . . . . . . . 12  |-  ( ( log `  ( sqr `  B ) )  / 
( sqr `  B
) )  e.  _V
96, 7, 8fvmpt 5774 . . . . . . . . . . 11  |-  ( ( sqr `  B )  e.  RR+  ->  ( G `
 ( sqr `  B
) )  =  ( ( log `  ( sqr `  B ) )  /  ( sqr `  B
) ) )
103, 9syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G `  ( sqr `  B ) )  =  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) ) )
11 bposlem7.3 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  NN )
1211nnrpd 11026 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
1312rpsqrcld 12898 . . . . . . . . . . 11  |-  ( ph  ->  ( sqr `  A
)  e.  RR+ )
14 fveq2 5691 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  A
)  ->  ( log `  x )  =  ( log `  ( sqr `  A ) ) )
15 id 22 . . . . . . . . . . . . 13  |-  ( x  =  ( sqr `  A
)  ->  x  =  ( sqr `  A ) )
1614, 15oveq12d 6109 . . . . . . . . . . . 12  |-  ( x  =  ( sqr `  A
)  ->  ( ( log `  x )  /  x )  =  ( ( log `  ( sqr `  A ) )  /  ( sqr `  A
) ) )
17 ovex 6116 . . . . . . . . . . . 12  |-  ( ( log `  ( sqr `  A ) )  / 
( sqr `  A
) )  e.  _V
1816, 7, 17fvmpt 5774 . . . . . . . . . . 11  |-  ( ( sqr `  A )  e.  RR+  ->  ( G `
 ( sqr `  A
) )  =  ( ( log `  ( sqr `  A ) )  /  ( sqr `  A
) ) )
1913, 18syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G `  ( sqr `  A ) )  =  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) )
2010, 19breq12d 4305 . . . . . . . . 9  |-  ( ph  ->  ( ( G `  ( sqr `  B ) )  <  ( G `
 ( sqr `  A
) )  <->  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) )  <  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) ) )
2113rpred 11027 . . . . . . . . . 10  |-  ( ph  ->  ( sqr `  A
)  e.  RR )
22 bposlem7.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e ^ 2 )  <_  A )
2312rprege0d 11034 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A )
)
24 resqrth 12745 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
2523, 24syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( sqr `  A
) ^ 2 )  =  A )
2622, 25breqtrrd 4318 . . . . . . . . . . 11  |-  ( ph  ->  ( _e ^ 2 )  <_  ( ( sqr `  A ) ^
2 ) )
2713rpge0d 11031 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( sqr `  A ) )
28 ere 13374 . . . . . . . . . . . . 13  |-  _e  e.  RR
29 0re 9386 . . . . . . . . . . . . . 14  |-  0  e.  RR
30 epos 13489 . . . . . . . . . . . . . 14  |-  0  <  _e
3129, 28, 30ltleii 9497 . . . . . . . . . . . . 13  |-  0  <_  _e
32 le2sq 11940 . . . . . . . . . . . . 13  |-  ( ( ( _e  e.  RR  /\  0  <_  _e )  /\  ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) ) )  -> 
( _e  <_  ( sqr `  A )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  A
) ^ 2 ) ) )
3328, 31, 32mpanl12 682 . . . . . . . . . . . 12  |-  ( ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) )  ->  (
_e  <_  ( sqr `  A
)  <->  ( _e ^
2 )  <_  (
( sqr `  A
) ^ 2 ) ) )
3421, 27, 33syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  <_  ( sqr `  A )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  A
) ^ 2 ) ) )
3526, 34mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( sqr `  A ) )
363rpred 11027 . . . . . . . . . 10  |-  ( ph  ->  ( sqr `  B
)  e.  RR )
37 bposlem7.6 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e ^ 2 )  <_  B )
382rprege0d 11034 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B )
)
39 resqrth 12745 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
( ( sqr `  B
) ^ 2 )  =  B )
4038, 39syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( sqr `  B
) ^ 2 )  =  B )
4137, 40breqtrrd 4318 . . . . . . . . . . 11  |-  ( ph  ->  ( _e ^ 2 )  <_  ( ( sqr `  B ) ^
2 ) )
423rpge0d 11031 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( sqr `  B ) )
43 le2sq 11940 . . . . . . . . . . . . 13  |-  ( ( ( _e  e.  RR  /\  0  <_  _e )  /\  ( ( sqr `  B
)  e.  RR  /\  0  <_  ( sqr `  B
) ) )  -> 
( _e  <_  ( sqr `  B )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  B
) ^ 2 ) ) )
4428, 31, 43mpanl12 682 . . . . . . . . . . . 12  |-  ( ( ( sqr `  B
)  e.  RR  /\  0  <_  ( sqr `  B
) )  ->  (
_e  <_  ( sqr `  B
)  <->  ( _e ^
2 )  <_  (
( sqr `  B
) ^ 2 ) ) )
4536, 42, 44syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  <_  ( sqr `  B )  <->  ( _e ^ 2 )  <_ 
( ( sqr `  B
) ^ 2 ) ) )
4641, 45mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( sqr `  B ) )
47 logdivlt 22070 . . . . . . . . . 10  |-  ( ( ( ( sqr `  A
)  e.  RR  /\  _e  <_  ( sqr `  A
) )  /\  (
( sqr `  B
)  e.  RR  /\  _e  <_  ( sqr `  B
) ) )  -> 
( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) )  <  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) ) )
4821, 35, 36, 46, 47syl22anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( log `  ( sqr `  B
) )  /  ( sqr `  B ) )  <  ( ( log `  ( sqr `  A
) )  /  ( sqr `  A ) ) ) )
4921, 36, 27, 42lt2sqd 12042 . . . . . . . . 9  |-  ( ph  ->  ( ( sqr `  A
)  <  ( sqr `  B )  <->  ( ( sqr `  A ) ^
2 )  <  (
( sqr `  B
) ^ 2 ) ) )
5020, 48, 493bitr2rd 282 . . . . . . . 8  |-  ( ph  ->  ( ( ( sqr `  A ) ^ 2 )  <  ( ( sqr `  B ) ^ 2 )  <->  ( G `  ( sqr `  B
) )  <  ( G `  ( sqr `  A ) ) ) )
5125, 40breq12d 4305 . . . . . . . 8  |-  ( ph  ->  ( ( ( sqr `  A ) ^ 2 )  <  ( ( sqr `  B ) ^ 2 )  <->  A  <  B ) )
52 relogcl 22027 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
53 rerpdivcl 11018 . . . . . . . . . . . . 13  |-  ( ( ( log `  x
)  e.  RR  /\  x  e.  RR+ )  -> 
( ( log `  x
)  /  x )  e.  RR )
5452, 53mpancom 669 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log `  x )  /  x )  e.  RR )
557, 54fmpti 5866 . . . . . . . . . . 11  |-  G : RR+
--> RR
5655ffvelrni 5842 . . . . . . . . . 10  |-  ( ( sqr `  B )  e.  RR+  ->  ( G `
 ( sqr `  B
) )  e.  RR )
573, 56syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( sqr `  B ) )  e.  RR )
5855ffvelrni 5842 . . . . . . . . . 10  |-  ( ( sqr `  A )  e.  RR+  ->  ( G `
 ( sqr `  A
) )  e.  RR )
5913, 58syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( sqr `  A ) )  e.  RR )
60 2rp 10996 . . . . . . . . . 10  |-  2  e.  RR+
61 rpsqrcl 12754 . . . . . . . . . 10  |-  ( 2  e.  RR+  ->  ( sqr `  2 )  e.  RR+ )
6260, 61mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( sqr `  2
)  e.  RR+ )
6357, 59, 62ltmul2d 11065 . . . . . . . 8  |-  ( ph  ->  ( ( G `  ( sqr `  B ) )  <  ( G `
 ( sqr `  A
) )  <->  ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  <  ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) ) ) )
6450, 51, 633bitr3d 283 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  < 
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) ) ) )
6564biimpd 207 . . . . . 6  |-  ( ph  ->  ( A  <  B  ->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  < 
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) ) ) )
6611nnred 10337 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
671nnred 10337 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
68 2re 10391 . . . . . . . . . . . 12  |-  2  e.  RR
69 2pos 10413 . . . . . . . . . . . 12  |-  0  <  2
7068, 69pm3.2i 455 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
7170a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
72 ltdiv1 10193 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
B  <->  ( A  / 
2 )  <  ( B  /  2 ) ) )
7366, 67, 71, 72syl3anc 1218 . . . . . . . . 9  |-  ( ph  ->  ( A  <  B  <->  ( A  /  2 )  <  ( B  / 
2 ) ) )
7412rphalfcld 11039 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  2
)  e.  RR+ )
7574rpred 11027 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  2
)  e.  RR )
7628, 68remulcli 9400 . . . . . . . . . . . . 13  |-  ( _e  x.  2 )  e.  RR
7776a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e  x.  2 )  e.  RR )
7828resqcli 11951 . . . . . . . . . . . . 13  |-  ( _e
^ 2 )  e.  RR
7978a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e ^ 2 )  e.  RR )
80 egt2lt3 13488 . . . . . . . . . . . . . . . . 17  |-  ( 2  <  _e  /\  _e  <  3 )
8180simpli 458 . . . . . . . . . . . . . . . 16  |-  2  <  _e
8268, 28, 81ltleii 9497 . . . . . . . . . . . . . . 15  |-  2  <_  _e
8368, 28, 28lemul2i 10256 . . . . . . . . . . . . . . . 16  |-  ( 0  <  _e  ->  (
2  <_  _e  <->  ( _e  x.  2 )  <_  (
_e  x.  _e )
) )
8430, 83ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 2  <_  _e  <->  ( _e  x.  2 )  <_  (
_e  x.  _e )
)
8582, 84mpbi 208 . . . . . . . . . . . . . 14  |-  ( _e  x.  2 )  <_ 
( _e  x.  _e )
8628recni 9398 . . . . . . . . . . . . . . 15  |-  _e  e.  CC
8786sqvali 11945 . . . . . . . . . . . . . 14  |-  ( _e
^ 2 )  =  ( _e  x.  _e )
8885, 87breqtrri 4317 . . . . . . . . . . . . 13  |-  ( _e  x.  2 )  <_ 
( _e ^ 2 )
8988a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( _e  x.  2 )  <_  ( _e ^ 2 ) )
9077, 79, 66, 89, 22letrd 9528 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  x.  2 )  <_  A )
91 lemuldiv 10211 . . . . . . . . . . . . 13  |-  ( ( _e  e.  RR  /\  A  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( _e  x.  2 )  <_  A 
<->  _e  <_  ( A  /  2 ) ) )
9228, 70, 91mp3an13 1305 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( _e  x.  2 )  <_  A  <->  _e  <_  ( A  /  2 ) ) )
9366, 92syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( _e  x.  2 )  <_  A  <->  _e 
<_  ( A  /  2
) ) )
9490, 93mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( A  /  2 ) )
952rphalfcld 11039 . . . . . . . . . . 11  |-  ( ph  ->  ( B  /  2
)  e.  RR+ )
9695rpred 11027 . . . . . . . . . 10  |-  ( ph  ->  ( B  /  2
)  e.  RR )
9777, 79, 67, 89, 37letrd 9528 . . . . . . . . . . 11  |-  ( ph  ->  ( _e  x.  2 )  <_  B )
98 lemuldiv 10211 . . . . . . . . . . . . 13  |-  ( ( _e  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( _e  x.  2 )  <_  B 
<->  _e  <_  ( B  /  2 ) ) )
9928, 70, 98mp3an13 1305 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( _e  x.  2 )  <_  B  <->  _e  <_  ( B  /  2 ) ) )
10067, 99syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( _e  x.  2 )  <_  B  <->  _e 
<_  ( B  /  2
) ) )
10197, 100mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  ( B  /  2 ) )
102 logdivlt 22070 . . . . . . . . . 10  |-  ( ( ( ( A  / 
2 )  e.  RR  /\  _e  <_  ( A  /  2 ) )  /\  ( ( B  /  2 )  e.  RR  /\  _e  <_  ( B  /  2 ) ) )  ->  (
( A  /  2
)  <  ( B  /  2 )  <->  ( ( log `  ( B  / 
2 ) )  / 
( B  /  2
) )  <  (
( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
10375, 94, 96, 101, 102syl22anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( ( A  / 
2 )  <  ( B  /  2 )  <->  ( ( log `  ( B  / 
2 ) )  / 
( B  /  2
) )  <  (
( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
10473, 103bitrd 253 . . . . . . . 8  |-  ( ph  ->  ( A  <  B  <->  ( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) )  < 
( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
105 fveq2 5691 . . . . . . . . . . . 12  |-  ( x  =  ( B  / 
2 )  ->  ( log `  x )  =  ( log `  ( B  /  2 ) ) )
106 id 22 . . . . . . . . . . . 12  |-  ( x  =  ( B  / 
2 )  ->  x  =  ( B  / 
2 ) )
107105, 106oveq12d 6109 . . . . . . . . . . 11  |-  ( x  =  ( B  / 
2 )  ->  (
( log `  x
)  /  x )  =  ( ( log `  ( B  /  2
) )  /  ( B  /  2 ) ) )
108 ovex 6116 . . . . . . . . . . 11  |-  ( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) )  e. 
_V
109107, 7, 108fvmpt 5774 . . . . . . . . . 10  |-  ( ( B  /  2 )  e.  RR+  ->  ( G `
 ( B  / 
2 ) )  =  ( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) ) )
11095, 109syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( B  /  2 ) )  =  ( ( log `  ( B  /  2
) )  /  ( B  /  2 ) ) )
111 fveq2 5691 . . . . . . . . . . . 12  |-  ( x  =  ( A  / 
2 )  ->  ( log `  x )  =  ( log `  ( A  /  2 ) ) )
112 id 22 . . . . . . . . . . . 12  |-  ( x  =  ( A  / 
2 )  ->  x  =  ( A  / 
2 ) )
113111, 112oveq12d 6109 . . . . . . . . . . 11  |-  ( x  =  ( A  / 
2 )  ->  (
( log `  x
)  /  x )  =  ( ( log `  ( A  /  2
) )  /  ( A  /  2 ) ) )
114 ovex 6116 . . . . . . . . . . 11  |-  ( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) )  e. 
_V
115113, 7, 114fvmpt 5774 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  RR+  ->  ( G `
 ( A  / 
2 ) )  =  ( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) )
11674, 115syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( A  /  2 ) )  =  ( ( log `  ( A  /  2
) )  /  ( A  /  2 ) ) )
117110, 116breq12d 4305 . . . . . . . 8  |-  ( ph  ->  ( ( G `  ( B  /  2
) )  <  ( G `  ( A  /  2 ) )  <-> 
( ( log `  ( B  /  2 ) )  /  ( B  / 
2 ) )  < 
( ( log `  ( A  /  2 ) )  /  ( A  / 
2 ) ) ) )
11855ffvelrni 5842 . . . . . . . . . 10  |-  ( ( B  /  2 )  e.  RR+  ->  ( G `
 ( B  / 
2 ) )  e.  RR )
11995, 118syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( B  /  2 ) )  e.  RR )
12055ffvelrni 5842 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  RR+  ->  ( G `
 ( A  / 
2 ) )  e.  RR )
12174, 120syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  ( A  /  2 ) )  e.  RR )
122 9nn 10486 . . . . . . . . . . 11  |-  9  e.  NN
123 4nn 10481 . . . . . . . . . . 11  |-  4  e.  NN
124 nnrp 11000 . . . . . . . . . . . 12  |-  ( 9  e.  NN  ->  9  e.  RR+ )
125 nnrp 11000 . . . . . . . . . . . 12  |-  ( 4  e.  NN  ->  4  e.  RR+ )
126 rpdivcl 11013 . . . . . . . . . . . 12  |-  ( ( 9  e.  RR+  /\  4  e.  RR+ )  ->  (
9  /  4 )  e.  RR+ )
127124, 125, 126syl2an 477 . . . . . . . . . . 11  |-  ( ( 9  e.  NN  /\  4  e.  NN )  ->  ( 9  /  4
)  e.  RR+ )
128122, 123, 127mp2an 672 . . . . . . . . . 10  |-  ( 9  /  4 )  e.  RR+
129128a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 9  /  4
)  e.  RR+ )
130119, 121, 129ltmul2d 11065 . . . . . . . 8  |-  ( ph  ->  ( ( G `  ( B  /  2
) )  <  ( G `  ( A  /  2 ) )  <-> 
( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) ) )
131104, 117, 1303bitr2d 281 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2 ) ) ) ) )
132131biimpd 207 . . . . . 6  |-  ( ph  ->  ( A  <  B  ->  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) ) )
13365, 132jcad 533 . . . . 5  |-  ( ph  ->  ( A  <  B  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  <  ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  /\  (
( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2 ) ) ) ) ) )
134 sqr2re 13532 . . . . . . 7  |-  ( sqr `  2 )  e.  RR
135 remulcl 9367 . . . . . . 7  |-  ( ( ( sqr `  2
)  e.  RR  /\  ( G `  ( sqr `  B ) )  e.  RR )  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  e.  RR )
136134, 57, 135sylancr 663 . . . . . 6  |-  ( ph  ->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  e.  RR )
137 9re 10408 . . . . . . . 8  |-  9  e.  RR
138 4re 10398 . . . . . . . 8  |-  4  e.  RR
139 4ne0 10418 . . . . . . . 8  |-  4  =/=  0
140137, 138, 139redivcli 10098 . . . . . . 7  |-  ( 9  /  4 )  e.  RR
141 remulcl 9367 . . . . . . 7  |-  ( ( ( 9  /  4
)  e.  RR  /\  ( G `  ( B  /  2 ) )  e.  RR )  -> 
( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  e.  RR )
142140, 119, 141sylancr 663 . . . . . 6  |-  ( ph  ->  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  e.  RR )
143 remulcl 9367 . . . . . . 7  |-  ( ( ( sqr `  2
)  e.  RR  /\  ( G `  ( sqr `  A ) )  e.  RR )  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  e.  RR )
144134, 59, 143sylancr 663 . . . . . 6  |-  ( ph  ->  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  e.  RR )
145 remulcl 9367 . . . . . . 7  |-  ( ( ( 9  /  4
)  e.  RR  /\  ( G `  ( A  /  2 ) )  e.  RR )  -> 
( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) )  e.  RR )
146140, 121, 145sylancr 663 . . . . . 6  |-  ( ph  ->  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) )  e.  RR )
147 lt2add 9824 . . . . . 6  |-  ( ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  e.  RR  /\  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  e.  RR )  /\  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  e.  RR  /\  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) )  e.  RR ) )  ->  ( (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  < 
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  /\  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  <  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) ) ) )
148136, 142, 144, 146, 147syl22anc 1219 . . . . 5  |-  ( ph  ->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  <  (
( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  /\  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) )  <  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  <  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) ) ) )
149133, 148syld 44 . . . 4  |-  ( ph  ->  ( A  <  B  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( B  /  2
) ) ) )  <  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) ) ) )
150 ltmul2 10180 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
B  <->  ( 2  x.  A )  <  (
2  x.  B ) ) )
15166, 67, 71, 150syl3anc 1218 . . . . . 6  |-  ( ph  ->  ( A  <  B  <->  ( 2  x.  A )  <  ( 2  x.  B ) ) )
152 rpmulcl 11012 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  A  e.  RR+ )  ->  (
2  x.  A )  e.  RR+ )
15360, 12, 152sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  A
)  e.  RR+ )
154153rpsqrcld 12898 . . . . . . . 8  |-  ( ph  ->  ( sqr `  (
2  x.  A ) )  e.  RR+ )
155 rpmulcl 11012 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  B  e.  RR+ )  ->  (
2  x.  B )  e.  RR+ )
15660, 2, 155sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  B
)  e.  RR+ )
157156rpsqrcld 12898 . . . . . . . 8  |-  ( ph  ->  ( sqr `  (
2  x.  B ) )  e.  RR+ )
158 rprege0 11005 . . . . . . . . 9  |-  ( ( sqr `  ( 2  x.  A ) )  e.  RR+  ->  ( ( sqr `  ( 2  x.  A ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  A ) ) ) )
159 rprege0 11005 . . . . . . . . 9  |-  ( ( sqr `  ( 2  x.  B ) )  e.  RR+  ->  ( ( sqr `  ( 2  x.  B ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  B ) ) ) )
160 lt2sq 11939 . . . . . . . . 9  |-  ( ( ( ( sqr `  (
2  x.  A ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  A ) ) )  /\  (
( sqr `  (
2  x.  B ) )  e.  RR  /\  0  <_  ( sqr `  (
2  x.  B ) ) ) )  -> 
( ( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) )  <->  ( ( sqr `  ( 2  x.  A ) ) ^
2 )  <  (
( sqr `  (
2  x.  B ) ) ^ 2 ) ) )
161158, 159, 160syl2an 477 . . . . . . . 8  |-  ( ( ( sqr `  (
2  x.  A ) )  e.  RR+  /\  ( sqr `  ( 2  x.  B ) )  e.  RR+ )  ->  ( ( sqr `  ( 2  x.  A ) )  <  ( sqr `  (
2  x.  B ) )  <->  ( ( sqr `  ( 2  x.  A
) ) ^ 2 )  <  ( ( sqr `  ( 2  x.  B ) ) ^ 2 ) ) )
162154, 157, 161syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) )  <->  ( ( sqr `  ( 2  x.  A ) ) ^
2 )  <  (
( sqr `  (
2  x.  B ) ) ^ 2 ) ) )
163153rprege0d 11034 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  A )  e.  RR  /\  0  <_  ( 2  x.  A ) ) )
164 resqrth 12745 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  RR  /\  0  <_  ( 2  x.  A ) )  -> 
( ( sqr `  (
2  x.  A ) ) ^ 2 )  =  ( 2  x.  A ) )
165163, 164syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( sqr `  (
2  x.  A ) ) ^ 2 )  =  ( 2  x.  A ) )
166156rprege0d 11034 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  B )  e.  RR  /\  0  <_  ( 2  x.  B ) ) )
167 resqrth 12745 . . . . . . . . 9  |-  ( ( ( 2  x.  B
)  e.  RR  /\  0  <_  ( 2  x.  B ) )  -> 
( ( sqr `  (
2  x.  B ) ) ^ 2 )  =  ( 2  x.  B ) )
168166, 167syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( sqr `  (
2  x.  B ) ) ^ 2 )  =  ( 2  x.  B ) )
169165, 168breq12d 4305 . . . . . . 7  |-  ( ph  ->  ( ( ( sqr `  ( 2  x.  A
) ) ^ 2 )  <  ( ( sqr `  ( 2  x.  B ) ) ^ 2 )  <->  ( 2  x.  A )  < 
( 2  x.  B
) ) )
170162, 169bitr2d 254 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  A )  <  (
2  x.  B )  <-> 
( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) ) ) )
171 1lt2 10488 . . . . . . . . 9  |-  1  <  2
172 rplogcl 22053 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
17368, 171, 172mp2an 672 . . . . . . . 8  |-  ( log `  2 )  e.  RR+
174173a1i 11 . . . . . . 7  |-  ( ph  ->  ( log `  2
)  e.  RR+ )
175154, 157, 174ltdiv2d 11050 . . . . . 6  |-  ( ph  ->  ( ( sqr `  (
2  x.  A ) )  <  ( sqr `  ( 2  x.  B
) )  <->  ( ( log `  2 )  / 
( sqr `  (
2  x.  B ) ) )  <  (
( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
176151, 170, 1753bitrd 279 . . . . 5  |-  ( ph  ->  ( A  <  B  <->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
177176biimpd 207 . . . 4  |-  ( ph  ->  ( A  <  B  ->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
178149, 177jcad 533 . . 3  |-  ( ph  ->  ( A  <  B  ->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  <  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) ) )
179136, 142readdcld 9413 . . . 4  |-  ( ph  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( B  /  2
) ) ) )  e.  RR )
180 rpre 10997 . . . . . 6  |-  ( ( log `  2 )  e.  RR+  ->  ( log `  2 )  e.  RR )
181173, 180ax-mp 5 . . . . 5  |-  ( log `  2 )  e.  RR
182 rerpdivcl 11018 . . . . 5  |-  ( ( ( log `  2
)  e.  RR  /\  ( sqr `  ( 2  x.  B ) )  e.  RR+ )  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  e.  RR )
183181, 157, 182sylancr 663 . . . 4  |-  ( ph  ->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  e.  RR )
184144, 146readdcld 9413 . . . 4  |-  ( ph  ->  ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  e.  RR )
185 rerpdivcl 11018 . . . . 5  |-  ( ( ( log `  2
)  e.  RR  /\  ( sqr `  ( 2  x.  A ) )  e.  RR+ )  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) )  e.  RR )
186181, 154, 185sylancr 663 . . . 4  |-  ( ph  ->  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) )  e.  RR )
187 lt2add 9824 . . . 4  |-  ( ( ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  e.  RR  /\  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  e.  RR )  /\  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( A  /  2
) ) ) )  e.  RR  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) )  e.  RR ) )  -> 
( ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  <  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )  ->  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )  <  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) ) )
188179, 183, 184, 186, 187syl22anc 1219 . . 3  |-  ( ph  ->  ( ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  <  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  /\  (
( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) )  < 
( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )  ->  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )  <  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) ) )
189178, 188syld 44 . 2  |-  ( ph  ->  ( A  <  B  ->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  B ) ) ) )  < 
( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  A ) ) ) ) ) )
190 fveq2 5691 . . . . . . . . 9  |-  ( n  =  B  ->  ( sqr `  n )  =  ( sqr `  B
) )
191190fveq2d 5695 . . . . . . . 8  |-  ( n  =  B  ->  ( G `  ( sqr `  n ) )  =  ( G `  ( sqr `  B ) ) )
192191oveq2d 6107 . . . . . . 7  |-  ( n  =  B  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  =  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) ) )
193 oveq1 6098 . . . . . . . . 9  |-  ( n  =  B  ->  (
n  /  2 )  =  ( B  / 
2 ) )
194193fveq2d 5695 . . . . . . . 8  |-  ( n  =  B  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( B  /  2
) ) )
195194oveq2d 6107 . . . . . . 7  |-  ( n  =  B  ->  (
( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) )  =  ( ( 9  /  4 )  x.  ( G `  ( B  /  2 ) ) ) )
196192, 195oveq12d 6109 . . . . . 6  |-  ( n  =  B  ->  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( n  /  2 ) ) ) )  =  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) ) )
197 oveq2 6099 . . . . . . . 8  |-  ( n  =  B  ->  (
2  x.  n )  =  ( 2  x.  B ) )
198197fveq2d 5695 . . . . . . 7  |-  ( n  =  B  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  B ) ) )
199198oveq2d 6107 . . . . . 6  |-  ( n  =  B  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) )  =  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )
200196, 199oveq12d 6109 . . . . 5  |-  ( n  =  B  ->  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( n  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  n ) ) ) )  =  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( B  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  B ) ) ) ) )
201 bposlem7.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  n ) ) ) ) )
202 ovex 6116 . . . . 5  |-  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) )  e.  _V
203200, 201, 202fvmpt 5774 . . . 4  |-  ( B  e.  NN  ->  ( F `  B )  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) ) )
2041, 203syl 16 . . 3  |-  ( ph  ->  ( F `  B
)  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  B
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( B  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  B
) ) ) ) )
205 fveq2 5691 . . . . . . . . 9  |-  ( n  =  A  ->  ( sqr `  n )  =  ( sqr `  A
) )
206205fveq2d 5695 . . . . . . . 8  |-  ( n  =  A  ->  ( G `  ( sqr `  n ) )  =  ( G `  ( sqr `  A ) ) )
207206oveq2d 6107 . . . . . . 7  |-  ( n  =  A  ->  (
( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  =  ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) ) )
208 oveq1 6098 . . . . . . . . 9  |-  ( n  =  A  ->  (
n  /  2 )  =  ( A  / 
2 ) )
209208fveq2d 5695 . . . . . . . 8  |-  ( n  =  A  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( A  /  2
) ) )
210209oveq2d 6107 . . . . . . 7  |-  ( n  =  A  ->  (
( 9  /  4
)  x.  ( G `
 ( n  / 
2 ) ) )  =  ( ( 9  /  4 )  x.  ( G `  ( A  /  2 ) ) ) )
211207, 210oveq12d 6109 . . . . . 6  |-  ( n  =  A  ->  (
( ( sqr `  2
)  x.  ( G `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( n  /  2 ) ) ) )  =  ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) ) )
212 oveq2 6099 . . . . . . . 8  |-  ( n  =  A  ->  (
2  x.  n )  =  ( 2  x.  A ) )
213212fveq2d 5695 . . . . . . 7  |-  ( n  =  A  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  A ) ) )
214213oveq2d 6107 . . . . . 6  |-  ( n  =  A  ->  (
( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) )  =  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )
215211, 214oveq12d 6109 . . . . 5  |-  ( n  =  A  ->  (
( ( ( sqr `  2 )  x.  ( G `  ( sqr `  n ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( n  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  n ) ) ) )  =  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  A ) ) ) ) )
216 ovex 6116 . . . . 5  |-  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) )  e.  _V
217215, 201, 216fvmpt 5774 . . . 4  |-  ( A  e.  NN  ->  ( F `  A )  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
21811, 217syl 16 . . 3  |-  ( ph  ->  ( F `  A
)  =  ( ( ( ( sqr `  2
)  x.  ( G `
 ( sqr `  A
) ) )  +  ( ( 9  / 
4 )  x.  ( G `  ( A  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  A
) ) ) ) )
219204, 218breq12d 4305 . 2  |-  ( ph  ->  ( ( F `  B )  <  ( F `  A )  <->  ( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  B ) ) )  +  ( ( 9  /  4 )  x.  ( G `  ( B  /  2
) ) ) )  +  ( ( log `  2 )  / 
( sqr `  (
2  x.  B ) ) ) )  < 
( ( ( ( sqr `  2 )  x.  ( G `  ( sqr `  A ) ) )  +  ( ( 9  /  4
)  x.  ( G `
 ( A  / 
2 ) ) ) )  +  ( ( log `  2 )  /  ( sqr `  (
2  x.  A ) ) ) ) ) )
220189, 219sylibrd 234 1  |-  ( ph  ->  ( A  <  B  ->  ( F `  B
)  <  ( F `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4292    e. cmpt 4350   ` cfv 5418  (class class class)co 6091   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    < clt 9418    <_ cle 9419    / cdiv 9993   NNcn 10322   2c2 10371   3c3 10372   4c4 10373   9c9 10378   RR+crp 10991   ^cexp 11865   sqrcsqr 12722   _eceu 13348   logclog 22006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ioc 11305  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-fac 12052  df-bc 12079  df-hash 12104  df-shft 12556  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-limsup 12949  df-clim 12966  df-rlim 12967  df-sum 13164  df-ef 13353  df-e 13354  df-sin 13355  df-cos 13356  df-pi 13358  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-lp 18740  df-perf 18741  df-cn 18831  df-cnp 18832  df-haus 18919  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-limc 21341  df-dv 21342  df-log 22008
This theorem is referenced by:  bposlem9  22631
  Copyright terms: Public domain W3C validator