MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Structured version   Visualization version   Unicode version

Theorem bposlem2 24292
Description: There are no odd primes in the range  ( 2 N  /  3 ,  N ] dividing the  N-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1  |-  ( ph  ->  N  e.  NN )
bposlem2.2  |-  ( ph  ->  P  e.  Prime )
bposlem2.3  |-  ( ph  ->  2  <  P )
bposlem2.4  |-  ( ph  ->  ( ( 2  x.  N )  /  3
)  <  P )
bposlem2.5  |-  ( ph  ->  P  <_  N )
Assertion
Ref Expression
bposlem2  |-  ( ph  ->  ( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  0 )

Proof of Theorem bposlem2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3  |-  ( ph  ->  N  e.  NN )
2 bposlem2.2 . . 3  |-  ( ph  ->  P  e.  Prime )
3 pcbcctr 24283 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
41, 2, 3syl2anc 673 . 2  |-  ( ph  ->  ( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
5 elfznn 11854 . . . . . 6  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  NN )
6 elnn1uz2 11258 . . . . . 6  |-  ( k  e.  NN  <->  ( k  =  1  \/  k  e.  ( ZZ>= `  2 )
) )
75, 6sylib 201 . . . . 5  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  (
k  =  1  \/  k  e.  ( ZZ>= ` 
2 ) ) )
8 oveq2 6316 . . . . . . . . . . . 12  |-  ( k  =  1  ->  ( P ^ k )  =  ( P ^ 1 ) )
9 prmnn 14704 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
102, 9syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
1110nncnd 10647 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
1211exp1d 12449 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 1 )  =  P )
138, 12sylan9eqr 2527 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  ( P ^ k )  =  P )
1413oveq2d 6324 . . . . . . . . . 10  |-  ( (
ph  /\  k  = 
1 )  ->  (
( 2  x.  N
)  /  ( P ^ k ) )  =  ( ( 2  x.  N )  /  P ) )
1514fveq2d 5883 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  ( |_ `  (
( 2  x.  N
)  /  P ) ) )
16 2t1e2 10781 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  =  2
1711mulid2d 9679 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  x.  P
)  =  P )
18 bposlem2.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  <_  N )
1917, 18eqbrtrd 4416 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  P
)  <_  N )
20 1red 9676 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
211nnred 10646 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
2210nnred 10646 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  RR )
2310nngt0d 10675 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  P )
24 lemuldiv 10508 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( ( 1  x.  P )  <_  N  <->  1  <_  ( N  /  P ) ) )
2520, 21, 22, 23, 24syl112anc 1296 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  x.  P )  <_  N  <->  1  <_  ( N  /  P ) ) )
2619, 25mpbid 215 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  /  P ) )
2721, 10nndivred 10680 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  /  P
)  e.  RR )
28 1re 9660 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
29 2re 10701 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
30 2pos 10723 . . . . . . . . . . . . . . . . 17  |-  0  <  2
3129, 30pm3.2i 462 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
32 lemul2 10480 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( N  /  P
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  ( N  /  P )  <->  ( 2  x.  1 )  <_ 
( 2  x.  ( N  /  P ) ) ) )
3328, 31, 32mp3an13 1381 . . . . . . . . . . . . . . 15  |-  ( ( N  /  P )  e.  RR  ->  (
1  <_  ( N  /  P )  <->  ( 2  x.  1 )  <_ 
( 2  x.  ( N  /  P ) ) ) )
3427, 33syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  <_  ( N  /  P )  <->  ( 2  x.  1 )  <_ 
( 2  x.  ( N  /  P ) ) ) )
3526, 34mpbid 215 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  1 )  <_  ( 2  x.  ( N  /  P ) ) )
3616, 35syl5eqbrr 4430 . . . . . . . . . . . 12  |-  ( ph  ->  2  <_  ( 2  x.  ( N  /  P ) ) )
37 2cnd 10704 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
381nncnd 10647 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
3910nnne0d 10676 . . . . . . . . . . . . 13  |-  ( ph  ->  P  =/=  0 )
4037, 38, 11, 39divassd 10440 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  =  ( 2  x.  ( N  /  P ) ) )
4136, 40breqtrrd 4422 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  ( (
2  x.  N )  /  P ) )
42 bposlem2.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2  x.  N )  /  3
)  <  P )
43 2nn 10790 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
44 nnmulcl 10654 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
4543, 1, 44sylancr 676 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  N
)  e.  NN )
4645nnred 10646 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
47 3re 10705 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
48 3pos 10725 . . . . . . . . . . . . . . . 16  |-  0  <  3
4947, 48pm3.2i 462 . . . . . . . . . . . . . . 15  |-  ( 3  e.  RR  /\  0  <  3 )
50 ltdiv23 10519 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 )  /\  ( P  e.  RR  /\  0  < 
P ) )  -> 
( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( ( 2  x.  N
)  /  P )  <  3 ) )
5149, 50mp3an2 1378 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  ->  ( (
( 2  x.  N
)  /  3 )  <  P  <->  ( (
2  x.  N )  /  P )  <  3 ) )
5246, 22, 23, 51syl12anc 1290 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( ( 2  x.  N
)  /  P )  <  3 ) )
5342, 52mpbid 215 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  <  3 )
54 df-3 10691 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
5553, 54syl6breq 4435 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  <  ( 2  +  1 ) )
5646, 10nndivred 10680 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  e.  RR )
57 2z 10993 . . . . . . . . . . . 12  |-  2  e.  ZZ
58 flbi 12084 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  N )  /  P
)  e.  RR  /\  2  e.  ZZ )  ->  ( ( |_ `  ( ( 2  x.  N )  /  P
) )  =  2  <-> 
( 2  <_  (
( 2  x.  N
)  /  P )  /\  ( ( 2  x.  N )  /  P )  <  (
2  +  1 ) ) ) )
5956, 57, 58sylancl 675 . . . . . . . . . . 11  |-  ( ph  ->  ( ( |_ `  ( ( 2  x.  N )  /  P
) )  =  2  <-> 
( 2  <_  (
( 2  x.  N
)  /  P )  /\  ( ( 2  x.  N )  /  P )  <  (
2  +  1 ) ) ) )
6041, 55, 59mpbir2and 936 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  (
( 2  x.  N
)  /  P ) )  =  2 )
6160adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( ( 2  x.  N )  /  P ) )  =  2 )
6215, 61eqtrd 2505 . . . . . . . 8  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  2 )
6313oveq2d 6324 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  = 
1 )  ->  ( N  /  ( P ^
k ) )  =  ( N  /  P
) )
6463fveq2d 5883 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( N  / 
( P ^ k
) ) )  =  ( |_ `  ( N  /  P ) ) )
65 remulcl 9642 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  RR  /\  ( N  /  P
)  e.  RR )  ->  ( 2  x.  ( N  /  P
) )  e.  RR )
6629, 27, 65sylancr 676 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  e.  RR )
6747a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  3  e.  RR )
68 4re 10708 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
6968a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  4  e.  RR )
7040, 53eqbrtrrd 4418 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  <  3 )
71 3lt4 10802 . . . . . . . . . . . . . . . . . 18  |-  3  <  4
7271a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  3  <  4 )
7366, 67, 69, 70, 72lttrd 9813 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  <  4 )
74 2t2e4 10782 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  2 )  =  4
7573, 74syl6breqr 4436 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  <  ( 2  x.  2 ) )
76 ltmul2 10478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  /  P
)  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( N  /  P )  <  2  <->  ( 2  x.  ( N  /  P
) )  <  (
2  x.  2 ) ) )
7729, 31, 76mp3an23 1382 . . . . . . . . . . . . . . . 16  |-  ( ( N  /  P )  e.  RR  ->  (
( N  /  P
)  <  2  <->  ( 2  x.  ( N  /  P ) )  < 
( 2  x.  2 ) ) )
7827, 77syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  /  P )  <  2  <->  ( 2  x.  ( N  /  P ) )  <  ( 2  x.  2 ) ) )
7975, 78mpbird 240 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  /  P
)  <  2 )
80 df-2 10690 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
8179, 80syl6breq 4435 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  /  P
)  <  ( 1  +  1 ) )
82 1z 10991 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
83 flbi 12084 . . . . . . . . . . . . . 14  |-  ( ( ( N  /  P
)  e.  RR  /\  1  e.  ZZ )  ->  ( ( |_ `  ( N  /  P
) )  =  1  <-> 
( 1  <_  ( N  /  P )  /\  ( N  /  P
)  <  ( 1  +  1 ) ) ) )
8427, 82, 83sylancl 675 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( N  /  P
) )  =  1  <-> 
( 1  <_  ( N  /  P )  /\  ( N  /  P
)  <  ( 1  +  1 ) ) ) )
8526, 81, 84mpbir2and 936 . . . . . . . . . . . 12  |-  ( ph  ->  ( |_ `  ( N  /  P ) )  =  1 )
8685adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( N  /  P ) )  =  1 )
8764, 86eqtrd 2505 . . . . . . . . . 10  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( N  / 
( P ^ k
) ) )  =  1 )
8887oveq2d 6324 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) )  =  ( 2  x.  1 ) )
8988, 16syl6eq 2521 . . . . . . . 8  |-  ( (
ph  /\  k  = 
1 )  ->  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) )  =  2 )
9062, 89oveq12d 6326 . . . . . . 7  |-  ( (
ph  /\  k  = 
1 )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  ( 2  -  2 ) )
91 2cn 10702 . . . . . . . 8  |-  2  e.  CC
9291subidi 9965 . . . . . . 7  |-  ( 2  -  2 )  =  0
9390, 92syl6eq 2521 . . . . . 6  |-  ( (
ph  /\  k  = 
1 )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
9445nnrpd 11362 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  N
)  e.  RR+ )
9594adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  e.  RR+ )
96 eluzge2nn0 11222 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN0 )
97 nnexpcl 12323 . . . . . . . . . . . . 13  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
9810, 96, 97syl2an 485 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  NN )
9998nnrpd 11362 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  RR+ )
10095, 99rpdivcld 11381 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR+ )
101100rpge0d 11368 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  0  <_  ( ( 2  x.  N
)  /  ( P ^ k ) ) )
10246adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  e.  RR )
103 remulcl 9642 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  RR  /\  P  e.  RR )  ->  ( 3  x.  P
)  e.  RR )
10447, 22, 103sylancr 676 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  P
)  e.  RR )
105104adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 3  x.  P )  e.  RR )
10698nnred 10646 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  RR )
107 ltdivmul 10502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  N
)  e.  RR  /\  P  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( ( 2  x.  N )  /  3 )  < 
P  <->  ( 2  x.  N )  <  (
3  x.  P ) ) )
10849, 107mp3an3 1379 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  N
)  e.  RR  /\  P  e.  RR )  ->  ( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( 2  x.  N )  <  ( 3  x.  P ) ) )
10946, 22, 108syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( 2  x.  N )  <  ( 3  x.  P ) ) )
11042, 109mpbid 215 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  N
)  <  ( 3  x.  P ) )
111110adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  < 
( 3  x.  P
) )
11222, 22remulcld 9689 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P  x.  P
)  e.  RR )
113112adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P  x.  P )  e.  RR )
114 bposlem2.3 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2  <  P )
115 nnltp1le 11016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  NN  /\  P  e.  NN )  ->  ( 2  <  P  <->  ( 2  +  1 )  <_  P ) )
11643, 10, 115sylancr 676 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2  <  P  <->  ( 2  +  1 )  <_  P ) )
117114, 116mpbid 215 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  +  1 )  <_  P )
11854, 117syl5eqbr 4429 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  3  <_  P )
119 lemul1 10479 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  RR  /\  P  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( 3  <_  P  <->  ( 3  x.  P )  <_  ( P  x.  P ) ) )
12047, 119mp3an1 1377 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  ->  ( 3  <_  P  <->  ( 3  x.  P )  <_ 
( P  x.  P
) ) )
12122, 22, 23, 120syl12anc 1290 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 3  <_  P  <->  ( 3  x.  P )  <_  ( P  x.  P ) ) )
122118, 121mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  P
)  <_  ( P  x.  P ) )
123122adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 3  x.  P )  <_ 
( P  x.  P
) )
12411sqvald 12451 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ 2 )  =  ( P  x.  P ) )
125124adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ 2 )  =  ( P  x.  P
) )
12622adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  P  e.  RR )
12710nnge1d 10674 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  <_  P )
128127adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  1  <_  P )
129 simpr 468 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  k  e.  ( ZZ>= `  2 )
)
130126, 128, 129leexp2ad 12486 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ 2 )  <_ 
( P ^ k
) )
131125, 130eqbrtrrd 4418 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P  x.  P )  <_  ( P ^ k ) )
132105, 113, 106, 123, 131letrd 9809 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 3  x.  P )  <_ 
( P ^ k
) )
133102, 105, 106, 111, 132ltletrd 9812 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  < 
( P ^ k
) )
13498nncnd 10647 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  CC )
135134mulid1d 9678 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( P ^ k )  x.  1 )  =  ( P ^ k ) )
136133, 135breqtrrd 4422 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  < 
( ( P ^
k )  x.  1 ) )
137 1red 9676 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  1  e.  RR )
138102, 137, 99ltdivmuld 11412 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
( 2  x.  N
)  /  ( P ^ k ) )  <  1  <->  ( 2  x.  N )  < 
( ( P ^
k )  x.  1 ) ) )
139136, 138mpbird 240 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 )
140 1e0p1 11102 . . . . . . . . . 10  |-  1  =  ( 0  +  1 )
141139, 140syl6breq 4435 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  < 
( 0  +  1 ) )
142100rpred 11364 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR )
143 0z 10972 . . . . . . . . . 10  |-  0  e.  ZZ
144 flbi 12084 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  =  0  <->  (
0  <_  ( (
2  x.  N )  /  ( P ^
k ) )  /\  ( ( 2  x.  N )  /  ( P ^ k ) )  <  ( 0  +  1 ) ) ) )
145142, 143, 144sylancl 675 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( ( 2  x.  N )  /  ( P ^ k ) )  /\  ( ( 2  x.  N )  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
146101, 141, 145mpbir2and 936 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  =  0 )
1471nnrpd 11362 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR+ )
148147adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  e.  RR+ )
149148, 99rpdivcld 11381 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  e.  RR+ )
150149rpge0d 11368 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  0  <_  ( N  /  ( P ^ k ) ) )
15121adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  e.  RR )
15221, 147ltaddrpd 11394 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  <  ( N  +  N ) )
153382timesd 10878 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  N
)  =  ( N  +  N ) )
154152, 153breqtrrd 4422 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  <  ( 2  x.  N ) )
155154adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  <  ( 2  x.  N ) )
156151, 102, 106, 155, 133lttrd 9813 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  <  ( P ^ k ) )
157156, 135breqtrrd 4422 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  <  ( ( P ^ k
)  x.  1 ) )
158151, 137, 99ltdivmuld 11412 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
159157, 158mpbird 240 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  <  1 )
160159, 140syl6breq 4435 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) )
161149rpred 11364 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  e.  RR )
162 flbi 12084 . . . . . . . . . . . 12  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  ( N  /  ( P ^
k ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ k
) )  /\  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) ) ) )
163161, 143, 162sylancl 675 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( N  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( N  /  ( P ^ k ) )  /\  ( N  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
164150, 160, 163mpbir2and 936 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  =  0 )
165164oveq2d 6324 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  ( 2  x.  0 ) )
166 2t0e0 10788 . . . . . . . . 9  |-  ( 2  x.  0 )  =  0
167165, 166syl6eq 2521 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  0 )
168146, 167oveq12d 6326 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  ( 0  -  0 ) )
169 0m0e0 10741 . . . . . . 7  |-  ( 0  -  0 )  =  0
170168, 169syl6eq 2521 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  0 )
17193, 170jaodan 802 . . . . 5  |-  ( (
ph  /\  ( k  =  1  \/  k  e.  ( ZZ>= `  2 )
) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
1727, 171sylan2 482 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... (
2  x.  N ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
173172sumeq2dv 13846 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  = 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) 0 )
174 fzfid 12224 . . . 4  |-  ( ph  ->  ( 1 ... (
2  x.  N ) )  e.  Fin )
175 sumz 13865 . . . . 5  |-  ( ( ( 1 ... (
2  x.  N ) )  C_  ( ZZ>= ` 
1 )  \/  (
1 ... ( 2  x.  N ) )  e. 
Fin )  ->  sum_ k  e.  ( 1 ... (
2  x.  N ) ) 0  =  0 )
176175olcs 402 . . . 4  |-  ( ( 1 ... ( 2  x.  N ) )  e.  Fin  ->  sum_ k  e.  ( 1 ... (
2  x.  N ) ) 0  =  0 )
177174, 176syl 17 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) 0  =  0 )
178173, 177eqtrd 2505 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
1794, 178eqtrd 2505 1  |-  ( ph  ->  ( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    C_ wss 3390   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Fincfn 7587   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   4c4 10683   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810   |_cfl 12059   ^cexp 12310    _C cbc 12525   sum_csu 13829   Primecprime 14701    pCnt cpc 14865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866
This theorem is referenced by:  bposlem3  24293
  Copyright terms: Public domain W3C validator