MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   Unicode version

Theorem bposlem1 24212
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ ( P  pCnt  ( ( 2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )

Proof of Theorem bposlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 12186 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 1 ... (
2  x.  N ) )  e.  Fin )
2 2nn 10767 . . . . . . . . . . 11  |-  2  e.  NN
3 nnmulcl 10632 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
42, 3mpan 676 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  NN )
54ad2antrr 732 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  NN )
6 prmnn 14625 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  NN )
76ad2antlr 733 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  P  e.  NN )
8 elfznn 11828 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  NN )
98adantl 468 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  NN )
109nnnn0d 10925 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  NN0 )
117, 10nnexpcld 12437 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  NN )
12 nnrp 11311 . . . . . . . . . 10  |-  ( ( 2  x.  N )  e.  NN  ->  (
2  x.  N )  e.  RR+ )
13 nnrp 11311 . . . . . . . . . 10  |-  ( ( P ^ k )  e.  NN  ->  ( P ^ k )  e.  RR+ )
14 rpdivcl 11325 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  e.  RR+  /\  ( P ^ k )  e.  RR+ )  ->  ( ( 2  x.  N )  /  ( P ^
k ) )  e.  RR+ )
1512, 13, 14syl2an 480 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( P ^ k )  e.  NN )  -> 
( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR+ )
165, 11, 15syl2anc 667 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  e.  RR+ )
1716rpred 11341 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  e.  RR )
1817flcld 12034 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  e.  ZZ )
19 2z 10969 . . . . . . 7  |-  2  e.  ZZ
20 simpll 760 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  NN )
21 nnrp 11311 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR+ )
22 rpdivcl 11325 . . . . . . . . . . 11  |-  ( ( N  e.  RR+  /\  ( P ^ k )  e.  RR+ )  ->  ( N  /  ( P ^
k ) )  e.  RR+ )
2321, 13, 22syl2an 480 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P ^ k )  e.  NN )  -> 
( N  /  ( P ^ k ) )  e.  RR+ )
2420, 11, 23syl2anc 667 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  RR+ )
2524rpred 11341 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  RR )
2625flcld 12034 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
27 zmulcl 10985 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  ZZ )  -> 
( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) )  e.  ZZ )
2819, 26, 27sylancr 669 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) )  e.  ZZ )
2918, 28zsubcld 11045 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  ZZ )
3029zred 11040 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  RR )
31 1re 9642 . . . . . 6  |-  1  e.  RR
32 0re 9643 . . . . . 6  |-  0  e.  RR
3331, 32keepel 3948 . . . . 5  |-  if ( k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  e.  RR
3433a1i 11 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  if ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  e.  RR )
3528zred 11040 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) )  e.  RR )
3617, 35resubcld 10047 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  RR )
37 2re 10679 . . . . . . . . . 10  |-  2  e.  RR
3837a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  2  e.  RR )
3918zred 11040 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  e.  RR )
40 flle 12035 . . . . . . . . . . 11  |-  ( ( ( 2  x.  N
)  /  ( P ^ k ) )  e.  RR  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  <_ 
( ( 2  x.  N )  /  ( P ^ k ) ) )
4117, 40syl 17 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  <_  ( (
2  x.  N )  /  ( P ^
k ) ) )
4239, 17, 35, 41lesub1dd 10229 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  ( (
( 2  x.  N
)  /  ( P ^ k ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
43 resubcl 9938 . . . . . . . . . . . . 13  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  1  e.  RR )  ->  (
( N  /  ( P ^ k ) )  -  1 )  e.  RR )
4425, 31, 43sylancl 668 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  - 
1 )  e.  RR )
45 remulcl 9624 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  e.  RR )
4637, 44, 45sylancr 669 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  e.  RR )
47 flltp1 12036 . . . . . . . . . . . . . 14  |-  ( ( N  /  ( P ^ k ) )  e.  RR  ->  ( N  /  ( P ^
k ) )  < 
( ( |_ `  ( N  /  ( P ^ k ) ) )  +  1 ) )
4825, 47syl 17 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  <  (
( |_ `  ( N  /  ( P ^
k ) ) )  +  1 ) )
49 1red 9658 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  RR )
5026zred 11040 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  RR )
5125, 49, 50ltsubaddd 10209 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( N  /  ( P ^ k ) )  <  ( ( |_
`  ( N  / 
( P ^ k
) ) )  +  1 ) ) )
5248, 51mpbird 236 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  - 
1 )  <  ( |_ `  ( N  / 
( P ^ k
) ) ) )
53 2pos 10701 . . . . . . . . . . . . . . 15  |-  0  <  2
5437, 53pm3.2i 457 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
55 ltmul2 10456 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) )  <  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
5654, 55mp3an3 1353 . . . . . . . . . . . . 13  |-  ( ( ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  RR )  -> 
( ( ( N  /  ( P ^
k ) )  - 
1 )  <  ( |_ `  ( N  / 
( P ^ k
) ) )  <->  ( 2  x.  ( ( N  /  ( P ^
k ) )  - 
1 ) )  < 
( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
5744, 50, 56syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) )  <  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
5852, 57mpbid 214 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  <  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) ) )
5946, 35, 17, 58ltsub2dd 10226 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( ( ( 2  x.  N
)  /  ( P ^ k ) )  -  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) ) ) )
60 2cnd 10682 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  2  e.  CC )
61 nncn 10617 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
6261ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  CC )
6311nncnd 10625 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  CC )
6411nnne0d 10654 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  =/=  0
)
6560, 62, 63, 64divassd 10418 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  =  ( 2  x.  ( N  /  ( P ^
k ) ) ) )
6625recnd 9669 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  CC )
67 1cnd 9659 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  CC )
6860, 66, 67subdid 10074 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( 2  x.  1 ) ) )
69 2t1e2 10758 . . . . . . . . . . . . . 14  |-  ( 2  x.  1 )  =  2
7069oveq2i 6301 . . . . . . . . . . . . 13  |-  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( 2  x.  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^ k ) ) )  -  2 )
7168, 70syl6eq 2501 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  2 ) )
7265, 71oveq12d 6308 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  - 
2 ) ) )
73 remulcl 9624 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( N  /  ( P ^ k ) )  e.  RR )  -> 
( 2  x.  ( N  /  ( P ^
k ) ) )  e.  RR )
7437, 25, 73sylancr 669 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( N  /  ( P ^ k ) ) )  e.  RR )
7574recnd 9669 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( N  /  ( P ^ k ) ) )  e.  CC )
76 2cn 10680 . . . . . . . . . . . 12  |-  2  e.  CC
77 nncan 9903 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  ( N  /  ( P ^
k ) ) )  e.  CC  /\  2  e.  CC )  ->  (
( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  - 
2 ) )  =  2 )
7875, 76, 77sylancl 668 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  -  ( ( 2  x.  ( N  /  ( P ^ k ) ) )  -  2 ) )  =  2 )
7972, 78eqtrd 2485 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) ) )  =  2 )
8059, 79breqtrd 4427 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  2 )
8130, 36, 38, 42, 80lelttrd 9793 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  2 )
82 df-2 10668 . . . . . . . 8  |-  2  =  ( 1  +  1 )
8381, 82syl6breq 4442 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( 1  +  1 ) )
84 1z 10967 . . . . . . . 8  |-  1  e.  ZZ
85 zleltp1 10987 . . . . . . . 8  |-  ( ( ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
1  <->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( 1  +  1 ) ) )
8629, 84, 85sylancl 668 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( |_ `  ( ( 2  x.  N )  /  ( P ^
k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) )  <_  1  <->  ( ( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  < 
( 1  +  1 ) ) )
8783, 86mpbird 236 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  1 )
88 iftrue 3887 . . . . . . 7  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  1 )
8988breq2d 4414 . . . . . 6  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  ( (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  <->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  1 ) )
9087, 89syl5ibrcom 226 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
919nnge1d 10652 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  <_  k
)
9291biantrurd 511 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  <_ 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <-> 
( 1  <_  k  /\  k  <_  ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ) )
936adantl 468 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  NN )
9493nnred 10624 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  RR )
95 prmuz2 14642 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
9695adantl 468 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  ( ZZ>= ` 
2 ) )
97 eluz2b1 11230 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
9897simprbi 466 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
9996, 98syl 17 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  P )
10094, 99jca 535 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  e.  RR  /\  1  <  P ) )
101100adantr 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P  e.  RR  /\  1  < 
P ) )
102 elfzelz 11800 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  ZZ )
103102adantl 468 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  ZZ )
1044adantr 467 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  NN )
105104nnrpd 11339 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  RR+ )
106105adantr 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  RR+ )
107 efexple 24209 . . . . . . . . . . 11  |-  ( ( ( P  e.  RR  /\  1  <  P )  /\  k  e.  ZZ  /\  ( 2  x.  N
)  e.  RR+ )  ->  ( ( P ^
k )  <_  (
2  x.  N )  <-> 
k  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
108101, 103, 106, 107syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( P ^ k )  <_ 
( 2  x.  N
)  <->  k  <_  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) )
1099nnzd 11039 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  ZZ )
11084a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  ZZ )
111104nnred 10624 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  RR )
112 1red 9658 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  e.  RR )
11337a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
2  e.  RR )
114 1lt2 10776 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
115114a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  2 )
116 nnre 10616 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  e.  RR )
117116adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  N  e.  RR )
118 0le2 10700 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  2
11937, 118pm3.2i 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  e.  RR  /\  0  <_  2 )
120119a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  e.  RR  /\  0  <_  2 ) )
121 nnge1 10635 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  1  <_  N )
122121adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <_  N )
123 lemul2a 10460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1  e.  RR  /\  N  e.  RR  /\  ( 2  e.  RR  /\  0  <_  2 ) )  /\  1  <_  N )  ->  (
2  x.  1 )  <_  ( 2  x.  N ) )
124112, 117, 120, 122, 123syl31anc 1271 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  1 )  <_  ( 2  x.  N ) )
12569, 124syl5eqbrr 4437 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
2  <_  ( 2  x.  N ) )
126112, 113, 111, 115, 125ltletrd 9795 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  ( 2  x.  N ) )
127111, 126rplogcld 23578 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  e.  RR+ )
12894, 99rplogcld 23578 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  P
)  e.  RR+ )
129127, 128rpdivcld 11358 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR+ )
130129rpred 11341 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR )
131130flcld 12034 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ )
132131adantr 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ )
133 elfz 11790 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  1  e.  ZZ  /\  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 1  <_  k  /\  k  <_  ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
134109, 110, 132, 133syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 1  <_  k  /\  k  <_  ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
13592, 108, 1343bitr4rd 290 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( P ^ k )  <_ 
( 2  x.  N
) ) )
136135notbid 296 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  -.  ( P ^ k )  <_ 
( 2  x.  N
) ) )
137111adantr 467 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  RR )
13811nnred 10624 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  RR )
139137, 138ltnled 9782 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  <->  -.  ( P ^ k )  <_ 
( 2  x.  N
) ) )
140136, 139bitr4d 260 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 2  x.  N )  < 
( P ^ k
) ) )
14116rpge0d 11345 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <_  (
( 2  x.  N
)  /  ( P ^ k ) ) )
142141adantrr 723 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  0  <_  ( ( 2  x.  N
)  /  ( P ^ k ) ) )
14311nngt0d 10653 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <  ( P ^ k ) )
144 ltdivmul 10480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  N
)  e.  RR  /\  1  e.  RR  /\  (
( P ^ k
)  e.  RR  /\  0  <  ( P ^
k ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  (
( P ^ k
)  x.  1 ) ) )
145137, 49, 138, 143, 144syl112anc 1272 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  (
( P ^ k
)  x.  1 ) ) )
14663mulid1d 9660 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( P ^ k )  x.  1 )  =  ( P ^ k ) )
147146breq2d 4414 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( ( P ^
k )  x.  1 )  <->  ( 2  x.  N )  <  ( P ^ k ) ) )
148145, 147bitrd 257 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  ( P ^ k ) ) )
149148biimprd 227 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 ) )
150149impr 625 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 )
151 0p1e1 10721 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
152150, 151syl6breqr 4443 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  < 
( 0  +  1 ) )
15317adantrr 723 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR )
154 0z 10948 . . . . . . . . . . . . 13  |-  0  e.  ZZ
155 flbi 12051 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  =  0  <->  (
0  <_  ( (
2  x.  N )  /  ( P ^
k ) )  /\  ( ( 2  x.  N )  /  ( P ^ k ) )  <  ( 0  +  1 ) ) ) )
156153, 154, 155sylancl 668 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( ( 2  x.  N )  /  ( P ^ k ) )  /\  ( ( 2  x.  N )  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
157142, 152, 156mpbir2and 933 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  =  0 )
15824rpge0d 11345 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <_  ( N  /  ( P ^
k ) ) )
159158adantrr 723 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  0  <_  ( N  /  ( P ^ k ) ) )
160116, 21ltaddrp2d 11372 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  <  ( N  +  N
) )
161612timesd 10855 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
162160, 161breqtrrd 4429 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  <  ( 2  x.  N
) )
163162ad2antrr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  <  (
2  x.  N ) )
164116ad2antrr 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  RR )
165 lttr 9710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( P ^ k )  e.  RR )  -> 
( ( N  < 
( 2  x.  N
)  /\  ( 2  x.  N )  < 
( P ^ k
) )  ->  N  <  ( P ^ k
) ) )
166164, 137, 138, 165syl3anc 1268 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  <  ( 2  x.  N )  /\  (
2  x.  N )  <  ( P ^
k ) )  ->  N  <  ( P ^
k ) ) )
167163, 166mpand 681 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  N  <  ( P ^ k ) ) )
168 ltdivmul 10480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR  /\  1  e.  RR  /\  (
( P ^ k
)  e.  RR  /\  0  <  ( P ^
k ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
169164, 49, 138, 143, 168syl112anc 1272 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
170146breq2d 4414 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  < 
( ( P ^
k )  x.  1 )  <->  N  <  ( P ^ k ) ) )
171169, 170bitrd 257 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( P ^ k ) ) )
172167, 171sylibrd 238 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( N  /  ( P ^
k ) )  <  1 ) )
173172impr 625 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  <  1 )
174173, 151syl6breqr 4443 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) )
17525adantrr 723 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  e.  RR )
176 flbi 12051 . . . . . . . . . . . . . . 15  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  ( N  /  ( P ^
k ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ k
) )  /\  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) ) ) )
177175, 154, 176sylancl 668 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( N  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( N  /  ( P ^ k ) )  /\  ( N  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
178159, 174, 177mpbir2and 933 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  =  0 )
179178oveq2d 6306 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  ( 2  x.  0 ) )
180 2t0e0 10765 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
181179, 180syl6eq 2501 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  0 )
182157, 181oveq12d 6308 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  ( 0  -  0 ) )
183 0m0e0 10719 . . . . . . . . . 10  |-  ( 0  -  0 )  =  0
184182, 183syl6eq 2501 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  0 )
185 0le0 10699 . . . . . . . . 9  |-  0  <_  0
186184, 185syl6eqbr 4440 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  0 )
187186expr 620 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  0 ) )
188140, 187sylbid 219 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
0 ) )
189 iffalse 3890 . . . . . . . 8  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  0 )
190189eqcomd 2457 . . . . . . 7  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  0  =  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
191190breq2d 4414 . . . . . 6  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  ( (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
0  <->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
192188, 191mpbidi 220 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
19390, 192pm2.61d 162 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
1941, 30, 34, 193fsumle 13859 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
195 pcbcctr 24204 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
196131zred 11040 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  RR )
197 flle 12035 . . . . . . . . 9  |-  ( ( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )
198130, 197syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )
199104nnnn0d 10925 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  NN0 )
20093, 199nnexpcld 12437 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  e.  NN )
201200nnred 10624 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  e.  RR )
202 bernneq3 12400 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
2  x.  N )  e.  NN0 )  -> 
( 2  x.  N
)  <  ( P ^ ( 2  x.  N ) ) )
20396, 199, 202syl2anc 667 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  <  ( P ^ ( 2  x.  N ) ) )
204111, 201, 203ltled 9783 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  <_  ( P ^ ( 2  x.  N ) ) )
205105reeflogd 23573 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  ( log `  ( 2  x.  N ) ) )  =  ( 2  x.  N ) )
20693nnrpd 11339 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  RR+ )
207104nnzd 11039 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  ZZ )
208 reexplog 23544 . . . . . . . . . . . . 13  |-  ( ( P  e.  RR+  /\  (
2  x.  N )  e.  ZZ )  -> 
( P ^ (
2  x.  N ) )  =  ( exp `  ( ( 2  x.  N )  x.  ( log `  P ) ) ) )
209206, 207, 208syl2anc 667 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  =  ( exp `  ( ( 2  x.  N )  x.  ( log `  P ) ) ) )
210209eqcomd 2457 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  (
( 2  x.  N
)  x.  ( log `  P ) ) )  =  ( P ^
( 2  x.  N
) ) )
211204, 205, 2103brtr4d 4433 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  ( log `  ( 2  x.  N ) ) )  <_  ( exp `  (
( 2  x.  N
)  x.  ( log `  P ) ) ) )
212105relogcld 23572 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  e.  RR )
213128rpred 11341 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  P
)  e.  RR )
214111, 213remulcld 9671 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  x.  ( log `  P ) )  e.  RR )
215 efle 14172 . . . . . . . . . . 11  |-  ( ( ( log `  (
2  x.  N ) )  e.  RR  /\  ( ( 2  x.  N )  x.  ( log `  P ) )  e.  RR )  -> 
( ( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) )  <->  ( exp `  ( log `  (
2  x.  N ) ) )  <_  ( exp `  ( ( 2  x.  N )  x.  ( log `  P
) ) ) ) )
216212, 214, 215syl2anc 667 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) )  <->  ( exp `  ( log `  (
2  x.  N ) ) )  <_  ( exp `  ( ( 2  x.  N )  x.  ( log `  P
) ) ) ) )
217211, 216mpbird 236 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) ) )
218212, 111, 128ledivmul2d 11392 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) )  <_  ( 2  x.  N )  <->  ( log `  ( 2  x.  N
) )  <_  (
( 2  x.  N
)  x.  ( log `  P ) ) ) )
219217, 218mpbird 236 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  <_ 
( 2  x.  N
) )
220196, 130, 111, 198, 219letrd 9792 . . . . . . 7  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) )
221 eluz 11172 . . . . . . . 8  |-  ( ( ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ  /\  (
2  x.  N )  e.  ZZ )  -> 
( ( 2  x.  N )  e.  (
ZZ>= `  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  <->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) ) )
222131, 207, 221syl2anc 667 . . . . . . 7  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  e.  (
ZZ>= `  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  <->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) ) )
223220, 222mpbird 236 . . . . . 6  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  ( ZZ>= `  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) ) )
224 fzss2 11838 . . . . . 6  |-  ( ( 2  x.  N )  e.  ( ZZ>= `  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  C_  ( 1 ... ( 2  x.  N ) ) )
225223, 224syl 17 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  C_  (
1 ... ( 2  x.  N ) ) )
226 sumhash 14841 . . . . 5  |-  ( ( ( 1 ... (
2  x.  N ) )  e.  Fin  /\  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  C_  (
1 ... ( 2  x.  N ) ) )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
2271, 225, 226syl2anc 667 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
228129rprege0d 11348 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) )  e.  RR  /\  0  <_  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )
229 flge0nn0 12054 . . . . 5  |-  ( ( ( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR  /\  0  <_ 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  NN0 )
230 hashfz1 12529 . . . . 5  |-  ( ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )  =  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) )
231228, 229, 2303syl 18 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )  =  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) )
232227, 231eqtr2d 2486 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  =  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
233194, 195, 2323brtr4d 4433 . 2  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )
234 simpr 463 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  Prime )
235 nnnn0 10876 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
236 fzctr 11903 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
237 bccl2 12508 . . . . . . 7  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
238235, 236, 2373syl 18 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
239238adantr 467 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  _C  N
)  e.  NN )
240234, 239pccld 14800 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN0 )
241240nn0zd 11038 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  ZZ )
242 efexple 24209 . . 3  |-  ( ( ( P  e.  RR  /\  1  <  P )  /\  ( P  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ZZ  /\  ( 2  x.  N
)  e.  RR+ )  ->  ( ( P ^
( P  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N )  <-> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
24394, 99, 241, 105, 242syl211anc 1274 . 2  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( P ^
( P  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N )  <-> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
244233, 243mpbird 236 1  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ ( P  pCnt  ( ( 2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    C_ wss 3404   ifcif 3881   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   Fincfn 7569   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11784   |_cfl 12026   ^cexp 12272    _C cbc 12487   #chash 12515   sum_csu 13752   expce 14114   Primecprime 14622    pCnt cpc 14786   logclog 23504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-sin 14123  df-cos 14124  df-pi 14126  df-dvds 14306  df-gcd 14469  df-prm 14623  df-pc 14787  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506
This theorem is referenced by:  bposlem5  24216  bposlem6  24217  chebbnd1lem1  24307
  Copyright terms: Public domain W3C validator