MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Unicode version

Theorem bposlem1 23287
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ ( P  pCnt  ( ( 2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )

Proof of Theorem bposlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 12047 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 1 ... (
2  x.  N ) )  e.  Fin )
2 2nn 10689 . . . . . . . . . . 11  |-  2  e.  NN
3 nnmulcl 10555 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
42, 3mpan 670 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  NN )
54ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  NN )
6 prmnn 14075 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  NN )
76ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  P  e.  NN )
8 elfznn 11710 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  NN )
98adantl 466 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  NN )
109nnnn0d 10848 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  NN0 )
117, 10nnexpcld 12295 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  NN )
12 nnrp 11225 . . . . . . . . . 10  |-  ( ( 2  x.  N )  e.  NN  ->  (
2  x.  N )  e.  RR+ )
13 nnrp 11225 . . . . . . . . . 10  |-  ( ( P ^ k )  e.  NN  ->  ( P ^ k )  e.  RR+ )
14 rpdivcl 11238 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  e.  RR+  /\  ( P ^ k )  e.  RR+ )  ->  ( ( 2  x.  N )  /  ( P ^
k ) )  e.  RR+ )
1512, 13, 14syl2an 477 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( P ^ k )  e.  NN )  -> 
( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR+ )
165, 11, 15syl2anc 661 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  e.  RR+ )
1716rpred 11252 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  e.  RR )
1817flcld 11899 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  e.  ZZ )
19 2z 10892 . . . . . . 7  |-  2  e.  ZZ
20 simpll 753 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  NN )
21 nnrp 11225 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR+ )
22 rpdivcl 11238 . . . . . . . . . . 11  |-  ( ( N  e.  RR+  /\  ( P ^ k )  e.  RR+ )  ->  ( N  /  ( P ^
k ) )  e.  RR+ )
2321, 13, 22syl2an 477 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P ^ k )  e.  NN )  -> 
( N  /  ( P ^ k ) )  e.  RR+ )
2420, 11, 23syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  RR+ )
2524rpred 11252 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  RR )
2625flcld 11899 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
27 zmulcl 10907 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  ZZ )  -> 
( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) )  e.  ZZ )
2819, 26, 27sylancr 663 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) )  e.  ZZ )
2918, 28zsubcld 10967 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  ZZ )
3029zred 10962 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  RR )
31 1re 9591 . . . . . 6  |-  1  e.  RR
32 0re 9592 . . . . . 6  |-  0  e.  RR
3331, 32keepel 4007 . . . . 5  |-  if ( k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  e.  RR
3433a1i 11 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  if ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  e.  RR )
3528zred 10962 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) )  e.  RR )
3617, 35resubcld 9983 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  RR )
37 2re 10601 . . . . . . . . . 10  |-  2  e.  RR
3837a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  2  e.  RR )
3918zred 10962 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  e.  RR )
40 flle 11900 . . . . . . . . . . 11  |-  ( ( ( 2  x.  N
)  /  ( P ^ k ) )  e.  RR  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  <_ 
( ( 2  x.  N )  /  ( P ^ k ) ) )
4117, 40syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  <_  ( (
2  x.  N )  /  ( P ^
k ) ) )
4239, 17, 35, 41lesub1dd 10164 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  ( (
( 2  x.  N
)  /  ( P ^ k ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
43 resubcl 9879 . . . . . . . . . . . . 13  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  1  e.  RR )  ->  (
( N  /  ( P ^ k ) )  -  1 )  e.  RR )
4425, 31, 43sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  - 
1 )  e.  RR )
45 remulcl 9573 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  e.  RR )
4637, 44, 45sylancr 663 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  e.  RR )
47 flltp1 11901 . . . . . . . . . . . . . 14  |-  ( ( N  /  ( P ^ k ) )  e.  RR  ->  ( N  /  ( P ^
k ) )  < 
( ( |_ `  ( N  /  ( P ^ k ) ) )  +  1 ) )
4825, 47syl 16 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  <  (
( |_ `  ( N  /  ( P ^
k ) ) )  +  1 ) )
49 1red 9607 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  RR )
5026zred 10962 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  RR )
5125, 49, 50ltsubaddd 10144 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( N  /  ( P ^ k ) )  <  ( ( |_
`  ( N  / 
( P ^ k
) ) )  +  1 ) ) )
5248, 51mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  - 
1 )  <  ( |_ `  ( N  / 
( P ^ k
) ) ) )
53 2pos 10623 . . . . . . . . . . . . . . 15  |-  0  <  2
5437, 53pm3.2i 455 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
55 ltmul2 10389 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) )  <  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
5654, 55mp3an3 1313 . . . . . . . . . . . . 13  |-  ( ( ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  RR )  -> 
( ( ( N  /  ( P ^
k ) )  - 
1 )  <  ( |_ `  ( N  / 
( P ^ k
) ) )  <->  ( 2  x.  ( ( N  /  ( P ^
k ) )  - 
1 ) )  < 
( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
5744, 50, 56syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) )  <  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
5852, 57mpbid 210 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  <  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) ) )
5946, 35, 17, 58ltsub2dd 10161 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( ( ( 2  x.  N
)  /  ( P ^ k ) )  -  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) ) ) )
60 2cnd 10604 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  2  e.  CC )
61 nncn 10540 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
6261ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  CC )
6311nncnd 10548 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  CC )
6411nnne0d 10576 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  =/=  0
)
6560, 62, 63, 64divassd 10351 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  =  ( 2  x.  ( N  /  ( P ^
k ) ) ) )
6625recnd 9618 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  CC )
67 1cnd 9608 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  CC )
6860, 66, 67subdid 10008 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( 2  x.  1 ) ) )
69 2t1e2 10680 . . . . . . . . . . . . . 14  |-  ( 2  x.  1 )  =  2
7069oveq2i 6293 . . . . . . . . . . . . 13  |-  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( 2  x.  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^ k ) ) )  -  2 )
7168, 70syl6eq 2524 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  2 ) )
7265, 71oveq12d 6300 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  - 
2 ) ) )
73 remulcl 9573 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( N  /  ( P ^ k ) )  e.  RR )  -> 
( 2  x.  ( N  /  ( P ^
k ) ) )  e.  RR )
7437, 25, 73sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( N  /  ( P ^ k ) ) )  e.  RR )
7574recnd 9618 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( N  /  ( P ^ k ) ) )  e.  CC )
76 2cn 10602 . . . . . . . . . . . 12  |-  2  e.  CC
77 nncan 9844 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  ( N  /  ( P ^
k ) ) )  e.  CC  /\  2  e.  CC )  ->  (
( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  - 
2 ) )  =  2 )
7875, 76, 77sylancl 662 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  -  ( ( 2  x.  ( N  /  ( P ^ k ) ) )  -  2 ) )  =  2 )
7972, 78eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) ) )  =  2 )
8059, 79breqtrd 4471 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  2 )
8130, 36, 38, 42, 80lelttrd 9735 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  2 )
82 df-2 10590 . . . . . . . 8  |-  2  =  ( 1  +  1 )
8381, 82syl6breq 4486 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( 1  +  1 ) )
84 1z 10890 . . . . . . . 8  |-  1  e.  ZZ
85 zleltp1 10909 . . . . . . . 8  |-  ( ( ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
1  <->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( 1  +  1 ) ) )
8629, 84, 85sylancl 662 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( |_ `  ( ( 2  x.  N )  /  ( P ^
k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) )  <_  1  <->  ( ( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  < 
( 1  +  1 ) ) )
8783, 86mpbird 232 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  1 )
88 iftrue 3945 . . . . . . 7  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  1 )
8988breq2d 4459 . . . . . 6  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  ( (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  <->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  1 ) )
9087, 89syl5ibrcom 222 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
919nnge1d 10574 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  <_  k
)
9291biantrurd 508 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  <_ 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <-> 
( 1  <_  k  /\  k  <_  ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ) )
936adantl 466 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  NN )
9493nnred 10547 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  RR )
95 prmuz2 14090 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
9695adantl 466 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  ( ZZ>= ` 
2 ) )
97 eluz2b1 11149 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
9897simprbi 464 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
9996, 98syl 16 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  P )
10094, 99jca 532 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  e.  RR  /\  1  <  P ) )
101100adantr 465 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P  e.  RR  /\  1  < 
P ) )
102 elfzelz 11684 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  ZZ )
103102adantl 466 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  ZZ )
1044adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  NN )
105104nnrpd 11251 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  RR+ )
106105adantr 465 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  RR+ )
107 efexple 23284 . . . . . . . . . . 11  |-  ( ( ( P  e.  RR  /\  1  <  P )  /\  k  e.  ZZ  /\  ( 2  x.  N
)  e.  RR+ )  ->  ( ( P ^
k )  <_  (
2  x.  N )  <-> 
k  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
108101, 103, 106, 107syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( P ^ k )  <_ 
( 2  x.  N
)  <->  k  <_  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) )
1099nnzd 10961 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  ZZ )
11084a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  ZZ )
111104nnred 10547 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  RR )
112 1red 9607 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  e.  RR )
11337a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
2  e.  RR )
114 1lt2 10698 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
115114a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  2 )
116 nnre 10539 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  e.  RR )
117116adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  N  e.  RR )
118 0le2 10622 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  2
11937, 118pm3.2i 455 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  e.  RR  /\  0  <_  2 )
120119a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  e.  RR  /\  0  <_  2 ) )
121 nnge1 10558 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  1  <_  N )
122121adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <_  N )
123 lemul2a 10393 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1  e.  RR  /\  N  e.  RR  /\  ( 2  e.  RR  /\  0  <_  2 ) )  /\  1  <_  N )  ->  (
2  x.  1 )  <_  ( 2  x.  N ) )
124112, 117, 120, 122, 123syl31anc 1231 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  1 )  <_  ( 2  x.  N ) )
12569, 124syl5eqbrr 4481 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
2  <_  ( 2  x.  N ) )
126112, 113, 111, 115, 125ltletrd 9737 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  ( 2  x.  N ) )
127111, 126rplogcld 22742 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  e.  RR+ )
12894, 99rplogcld 22742 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  P
)  e.  RR+ )
129127, 128rpdivcld 11269 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR+ )
130129rpred 11252 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR )
131130flcld 11899 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ )
132131adantr 465 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ )
133 elfz 11674 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  1  e.  ZZ  /\  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 1  <_  k  /\  k  <_  ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
134109, 110, 132, 133syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 1  <_  k  /\  k  <_  ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
13592, 108, 1343bitr4rd 286 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( P ^ k )  <_ 
( 2  x.  N
) ) )
136135notbid 294 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  -.  ( P ^ k )  <_ 
( 2  x.  N
) ) )
137111adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  RR )
13811nnred 10547 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  RR )
139137, 138ltnled 9727 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  <->  -.  ( P ^ k )  <_ 
( 2  x.  N
) ) )
140136, 139bitr4d 256 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 2  x.  N )  < 
( P ^ k
) ) )
14116rpge0d 11256 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <_  (
( 2  x.  N
)  /  ( P ^ k ) ) )
142141adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  0  <_  ( ( 2  x.  N
)  /  ( P ^ k ) ) )
14311nngt0d 10575 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <  ( P ^ k ) )
144 ltdivmul 10413 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  N
)  e.  RR  /\  1  e.  RR  /\  (
( P ^ k
)  e.  RR  /\  0  <  ( P ^
k ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  (
( P ^ k
)  x.  1 ) ) )
145137, 49, 138, 143, 144syl112anc 1232 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  (
( P ^ k
)  x.  1 ) ) )
14663mulid1d 9609 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( P ^ k )  x.  1 )  =  ( P ^ k ) )
147146breq2d 4459 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( ( P ^
k )  x.  1 )  <->  ( 2  x.  N )  <  ( P ^ k ) ) )
148145, 147bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  ( P ^ k ) ) )
149148biimprd 223 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 ) )
150149impr 619 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 )
151 0p1e1 10643 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
152150, 151syl6breqr 4487 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  < 
( 0  +  1 ) )
15317adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR )
154 0z 10871 . . . . . . . . . . . . 13  |-  0  e.  ZZ
155 flbi 11916 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  =  0  <->  (
0  <_  ( (
2  x.  N )  /  ( P ^
k ) )  /\  ( ( 2  x.  N )  /  ( P ^ k ) )  <  ( 0  +  1 ) ) ) )
156153, 154, 155sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( ( 2  x.  N )  /  ( P ^ k ) )  /\  ( ( 2  x.  N )  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
157142, 152, 156mpbir2and 920 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  =  0 )
15824rpge0d 11256 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <_  ( N  /  ( P ^
k ) ) )
159158adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  0  <_  ( N  /  ( P ^ k ) ) )
160116, 21ltaddrp2d 11282 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  <  ( N  +  N
) )
161612timesd 10777 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
162160, 161breqtrrd 4473 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  <  ( 2  x.  N
) )
163162ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  <  (
2  x.  N ) )
164116ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  RR )
165 lttr 9657 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( P ^ k )  e.  RR )  -> 
( ( N  < 
( 2  x.  N
)  /\  ( 2  x.  N )  < 
( P ^ k
) )  ->  N  <  ( P ^ k
) ) )
166164, 137, 138, 165syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  <  ( 2  x.  N )  /\  (
2  x.  N )  <  ( P ^
k ) )  ->  N  <  ( P ^
k ) ) )
167163, 166mpand 675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  N  <  ( P ^ k ) ) )
168 ltdivmul 10413 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR  /\  1  e.  RR  /\  (
( P ^ k
)  e.  RR  /\  0  <  ( P ^
k ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
169164, 49, 138, 143, 168syl112anc 1232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
170146breq2d 4459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  < 
( ( P ^
k )  x.  1 )  <->  N  <  ( P ^ k ) ) )
171169, 170bitrd 253 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( P ^ k ) ) )
172167, 171sylibrd 234 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( N  /  ( P ^
k ) )  <  1 ) )
173172impr 619 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  <  1 )
174173, 151syl6breqr 4487 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) )
17525adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  e.  RR )
176 flbi 11916 . . . . . . . . . . . . . . 15  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  ( N  /  ( P ^
k ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ k
) )  /\  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) ) ) )
177175, 154, 176sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( N  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( N  /  ( P ^ k ) )  /\  ( N  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
178159, 174, 177mpbir2and 920 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  =  0 )
179178oveq2d 6298 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  ( 2  x.  0 ) )
180 2t0e0 10687 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
181179, 180syl6eq 2524 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  0 )
182157, 181oveq12d 6300 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  ( 0  -  0 ) )
183 0m0e0 10641 . . . . . . . . . 10  |-  ( 0  -  0 )  =  0
184182, 183syl6eq 2524 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  0 )
185 0le0 10621 . . . . . . . . 9  |-  0  <_  0
186184, 185syl6eqbr 4484 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  0 )
187186expr 615 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  0 ) )
188140, 187sylbid 215 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
0 ) )
189 iffalse 3948 . . . . . . . 8  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  0 )
190189eqcomd 2475 . . . . . . 7  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  0  =  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
191190breq2d 4459 . . . . . 6  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  ( (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
0  <->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
192188, 191mpbidi 216 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
19390, 192pm2.61d 158 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
1941, 30, 34, 193fsumle 13572 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
195 pcbcctr 23279 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
196131zred 10962 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  RR )
197 flle 11900 . . . . . . . . 9  |-  ( ( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )
198130, 197syl 16 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )
199104nnnn0d 10848 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  NN0 )
20093, 199nnexpcld 12295 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  e.  NN )
201200nnred 10547 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  e.  RR )
202 bernneq3 12258 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
2  x.  N )  e.  NN0 )  -> 
( 2  x.  N
)  <  ( P ^ ( 2  x.  N ) ) )
20396, 199, 202syl2anc 661 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  <  ( P ^ ( 2  x.  N ) ) )
204111, 201, 203ltled 9728 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  <_  ( P ^ ( 2  x.  N ) ) )
205105reeflogd 22737 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  ( log `  ( 2  x.  N ) ) )  =  ( 2  x.  N ) )
20693nnrpd 11251 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  RR+ )
207104nnzd 10961 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  ZZ )
208 reexplog 22707 . . . . . . . . . . . . 13  |-  ( ( P  e.  RR+  /\  (
2  x.  N )  e.  ZZ )  -> 
( P ^ (
2  x.  N ) )  =  ( exp `  ( ( 2  x.  N )  x.  ( log `  P ) ) ) )
209206, 207, 208syl2anc 661 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  =  ( exp `  ( ( 2  x.  N )  x.  ( log `  P ) ) ) )
210209eqcomd 2475 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  (
( 2  x.  N
)  x.  ( log `  P ) ) )  =  ( P ^
( 2  x.  N
) ) )
211204, 205, 2103brtr4d 4477 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  ( log `  ( 2  x.  N ) ) )  <_  ( exp `  (
( 2  x.  N
)  x.  ( log `  P ) ) ) )
212105relogcld 22736 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  e.  RR )
213128rpred 11252 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  P
)  e.  RR )
214111, 213remulcld 9620 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  x.  ( log `  P ) )  e.  RR )
215 efle 13710 . . . . . . . . . . 11  |-  ( ( ( log `  (
2  x.  N ) )  e.  RR  /\  ( ( 2  x.  N )  x.  ( log `  P ) )  e.  RR )  -> 
( ( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) )  <->  ( exp `  ( log `  (
2  x.  N ) ) )  <_  ( exp `  ( ( 2  x.  N )  x.  ( log `  P
) ) ) ) )
216212, 214, 215syl2anc 661 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) )  <->  ( exp `  ( log `  (
2  x.  N ) ) )  <_  ( exp `  ( ( 2  x.  N )  x.  ( log `  P
) ) ) ) )
217211, 216mpbird 232 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) ) )
218212, 111, 128ledivmul2d 11302 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) )  <_  ( 2  x.  N )  <->  ( log `  ( 2  x.  N
) )  <_  (
( 2  x.  N
)  x.  ( log `  P ) ) ) )
219217, 218mpbird 232 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  <_ 
( 2  x.  N
) )
220196, 130, 111, 198, 219letrd 9734 . . . . . . 7  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) )
221 eluz 11091 . . . . . . . 8  |-  ( ( ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ  /\  (
2  x.  N )  e.  ZZ )  -> 
( ( 2  x.  N )  e.  (
ZZ>= `  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  <->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) ) )
222131, 207, 221syl2anc 661 . . . . . . 7  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  e.  (
ZZ>= `  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  <->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) ) )
223220, 222mpbird 232 . . . . . 6  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  ( ZZ>= `  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) ) )
224 fzss2 11719 . . . . . 6  |-  ( ( 2  x.  N )  e.  ( ZZ>= `  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  C_  ( 1 ... ( 2  x.  N ) ) )
225223, 224syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  C_  (
1 ... ( 2  x.  N ) ) )
226 sumhash 14270 . . . . 5  |-  ( ( ( 1 ... (
2  x.  N ) )  e.  Fin  /\  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  C_  (
1 ... ( 2  x.  N ) ) )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
2271, 225, 226syl2anc 661 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
228129rprege0d 11259 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) )  e.  RR  /\  0  <_  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )
229 flge0nn0 11918 . . . . 5  |-  ( ( ( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR  /\  0  <_ 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  NN0 )
230 hashfz1 12383 . . . . 5  |-  ( ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )  =  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) )
231228, 229, 2303syl 20 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )  =  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) )
232227, 231eqtr2d 2509 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  =  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
233194, 195, 2323brtr4d 4477 . 2  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )
234 simpr 461 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  Prime )
235 nnnn0 10798 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
236 fzctr 11780 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
237 bccl2 12365 . . . . . . 7  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
238235, 236, 2373syl 20 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
239238adantr 465 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  _C  N
)  e.  NN )
240234, 239pccld 14229 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN0 )
241240nn0zd 10960 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  ZZ )
242 efexple 23284 . . 3  |-  ( ( ( P  e.  RR  /\  1  <  P )  /\  ( P  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ZZ  /\  ( 2  x.  N
)  e.  RR+ )  ->  ( ( P ^
( P  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N )  <-> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
24394, 99, 241, 105, 242syl211anc 1234 . 2  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( P ^
( P  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N )  <-> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
244233, 243mpbird 232 1  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ ( P  pCnt  ( ( 2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3476   ifcif 3939   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   ...cfz 11668   |_cfl 11891   ^cexp 12130    _C cbc 12344   #chash 12369   sum_csu 13467   expce 13655   Primecprime 14072    pCnt cpc 14215   logclog 22670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-gcd 14000  df-prm 14073  df-pc 14216  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672
This theorem is referenced by:  bposlem5  23291  bposlem6  23292  chebbnd1lem1  23382
  Copyright terms: Public domain W3C validator